
Enterprise Edition

4.0.12

June 11, 2020

Contents

1 Getting Started 5
1.1 Deployment Options . 5

1.1.1 System Requirements . 5
1.1.2 Public Cloud (AWS, Azure, et. al.) . 5
1.1.3 Backups . 6

1.2 Installation . 6
1.2.1 Install the Supporting Tools . 6
1.2.2 Run the Standalone CodeScene Application . 6
1.2.3 Run CodeScene in Tomcat . 8
1.2.4 Configure additional users . 9

1.3 Configure Your Environment . 10
1.3.1 Setup an SSH Key for Git . 10
1.3.2 Using Basic Authentication for Git . 10
1.3.3 Persistent Authentication Sessions . 10
1.3.4 Set up a Proxy Server . 11

1.4 Run an Analysis . 12
1.4.1 Creating a New Project . 12
1.4.2 Force an Analysis . 13
1.4.3 Run a Retrospective . 16
1.4.4 Find your Way Around . 16
1.4.5 Analyse Projects with Git Submodules . 16

1.5 Resolve Developer Aliases . 17
1.6 Use a Reverse Proxy for HTTPS Support . 18
1.7 Upgrade Your License . 18

1.7.1 Upgrade from an Expired License . 18
1.7.2 Upgrade from a Previous License . 19

1.8 Troubleshooting: Diagnostics, Errors, and Logs . 19
1.8.1 Analysis Errors . 20
1.8.2 Logs . 21

2 Hands On Behavioral Code Analysis: CodeScene Use Cases 22
2.1 What is a Behavioral Code Analysis? . 22
2.2 The Two Main Use Cases for Behavioral Code Analysis 22
2.3 A Workflow to Manage Technical Debt . 24

2.3.1 Identify and Prioritize Technical Debt in Your First Analyses 24
2.3.2 Act on the Identified Technical Debt . 26
2.3.3 Track and Visualize the State of your Technical Debt 27
2.3.4 Supervise Your Goals with CI/CD Quality Gates 27

2.4 Track Multiple Codebases and Products on the Inter-Project Dashboard 28
2.5 Subscribe to Auto-Generated Analysis Reports . 29
2.6 What’s Next? . 29

3 Integrations 30
3.1 Integrate CodeScene in your CI/CD Pipeline . 30

3.1.1 CodeScene Jenkins Plugin . 30

1

CONTENTS

3.1.2 CodeScene’s Automated Pull Request Review for GitHub, GitLab, BitBucket and
Azure DevOps . 30

3.1.3 Integrate CodeScene with GitHub Checks API . 32
3.1.4 CodeScene Orb for CircleCI Integration . 32
3.1.5 CodeScene Integration with Gerrit . 32

3.2 Integrate Costs and Issues into CodeScene (Jira, Trello, Azure DevOps and GitHub Issues) 32
3.2.1 CodeScene’s Cost Model . 33
3.2.2 Calculating Development Costs: the four options 33
3.2.3 Export Cost Data to Excel/CSV . 35
3.2.4 Configuration . 35
3.2.5 Advanced Information: CodeScene’s Cost Distribution 39

3.3 REST API . 39
3.3.1 The REST API documentation URL . 40
3.3.2 Using CodeScene’s REST API . 40
3.3.3 Examples: Use Cases and Scripts . 45

3.4 Keep Tabs on the State of your Code with Badges . 46
3.4.1 Types of Badges . 46
3.4.2 Configuration . 47
3.4.3 Embedding . 47
3.4.4 Embedding on GitHub . 47
3.4.5 Security . 48

4 Guides 49
4.1 Dashboards and Reporting . 49

4.1.1 CodeScene’s Dashboards: The Status of Your Codebase at a Glance 49
4.1.2 Custom Reports: Export Detailed Data as CSV Files 50

4.2 Technical . 56
4.2.1 Hotspots . 56
4.2.2 Code Health – How easy is your code to maintain and evolve? 64
4.2.3 Manage Hotspots and Technical Debt with Goals 70
4.2.4 Change Coupling: Visualize Logical Dependencies 73
4.2.5 Complexity Trends . 77
4.2.6 X-Ray . 82
4.2.7 Development Output and Code Churn . 92
4.2.8 Code Age . 95

4.3 Architectural . 100
4.3.1 Architectural Analyses . 100

4.4 Social . 110
4.4.1 Delivery Effectiveness by Organizational Trends . 110
4.4.2 Social Networks . 117
4.4.3 Knowledge Distribution . 119
4.4.4 Parallel Development and Code Fragmentation . 127
4.4.5 Modus Operandi . 130
4.4.6 Author and Team Statistics . 130
4.4.7 Know the possible Biases in the Data . 132

4.5 Project Management . 133
4.5.1 Project Management Analyses . 133
4.5.2 Risk Analysis . 137

4.6 Continuous Integration and Code Review API . 139
4.6.1 CI/CD Integration with CodeScene’s Delta Analysis 139
4.6.2 Branch Analyses . 148

4.7 Delivery Performance . 150
4.7.1 Measure Delivery Performance with Business Metrics 150

4.8 Simulations . 159
4.8.1 Team Planning with the On- and Off-Boarding Simulation 159

4.9 Miscellaneous . 161
4.9.1 Notifications . 161

2

CONTENTS

5 Configuration 168
5.1 Project Configuration . 168

5.1.1 Specify the Git Repository to Analyze . 168
5.1.2 Analyze Projects organized in Multiple Git Repositories 168
5.1.3 Auto-Import Repository Paths . 170
5.1.4 Tune the House-Keeping Options for Analysis Results 171
5.1.5 Measure Temporal Coupling across Multiple Repositories 171
5.1.6 Temporal Coupling Exclusion Filters . 172
5.1.7 Linking to an External Ticket System . 173
5.1.8 Detect Patterns in Code Comments . 173
5.1.9 Exclude Initial Commits from an Analysis . 174
5.1.10 Exclude Files from an Analysis . 174
5.1.11 Exclude Specific Files and Folders from an Analysis 175
5.1.12 A Brief Guide to Glob Patterns . 176
5.1.13 Specify An Analysis Period . 176
5.1.14 Working with Repo . 177
5.1.15 Exporting the project configuration . 180

5.2 Configure Developers and Teams . 180
5.2.1 Important: Run an Initial Analysis Before You Configure Developers 181
5.2.2 Define Your Development Teams . 181
5.2.3 Configure Developer Properties . 182
5.2.4 Developers and their Aliases: Mapping Version-Control Names to People 183
5.2.5 Import or Export a Definition of Development Teams 187

5.3 Users and Roles . 187
5.3.1 First Time Access . 187
5.3.2 Adding Users . 187
5.3.3 Assigning Roles . 187
5.3.4 Permissions by Role . 189
5.3.5 Project Access Management . 191
5.3.6 Single Sign-On . 192

5.4 Configure CodeScene for Pair Programming . 197
5.4.1 Configuration Examples . 197
5.4.2 Map Aliases for Authors in the Pairs . 198

5.5 Project Management Integration . 198
5.5.1 Repository Configuration . 198
5.5.2 Ticket ID Configuration . 199

5.6 Manage Projects . 201
5.6.1 What’s an Active Author? . 201
5.6.2 How do I monitor Project Activity and Active Authors? 202

5.7 Performance: Enable Concurrent Analyses . 202
5.7.1 Enable Concurrent Analyses . 203

5.8 Legal Restrictions . 203
5.8.1 Disable the Author Statistics . 203
5.8.2 Disable the Off-Boarding Simulation . 205
5.8.3 A Warning on Performance Evaluations . 205

Welcome to the CodeScene documentation!

This documentation is divided into sections, each being suited for different types of information you
might be looking for.

• Getting Started (page 5) helps you take the first steps after you purchase of CodeScene. You will
learn how to install and setup the tool, as well as running your first analysis.

• Hands On Behavioral Code Analysis: CodeScene Use Cases (page 22) shows how to get the most
out of CodeScene by learning its use cases and how to apply and integrate the analysis information
in your daily work.

3

CONTENTS

• Integrations (page 30) explains how you integrate CodeScene into CI/CD to enable quality gates,
as well as the integrations to Jira, Trello and Azure DevOps in order to measure lead times in your
development process.

• Guides (page 49) walk you through specific features and aspects of the tool, focusing on how you
can use them to achieve certain goals.

• Configuration (page 168) explains how you configure projects to get the best possible analysis
results.

• usage/language-support covers CodeScene’s language level support.

4

Chapter 1

Getting Started

CodeScene is a web-based application that you install on a server and access via your web browser. Once
you’ve installed the tool, you will be up and running with your first analysis results in just a few minutes.

1.1 Deployment Options

CodeScene runs anywhere a modern Java Virtual Machine (JVM) runs. We test the tool on Mac OS,
Windows, and various Linux distributions.

You can run CodeScene on your own server or choose from many popular cloud providers like AWS or
Azure. When considering a fully-managed solution like Azure App Service keep in mind that CodeScene
needs a fast and reliable file storage to operate properly. See also the System Requirements section.

1.1.1 System Requirements

The requirements change with the size and history of the codebase you want to analyze.

Physical memory and fast disk IO are the most critical resources on the server:

• 4+ GB of RAM - it’s usually a good idea to adjust default Java heap size (1/4 of RAM) via -Xmx
or -XX:MaxRAMPercentage (JDK 11+) to roughly 3/4 of total RAM (if CodeScene is the only
significant process running on the server).

• Fast (SSD) disk - crucial for analyzing large repos with deep history.

– Do not use shared/distributed file storage like Azure Files, Amazon EFS, or NFS !
Our experience shows that this leads to serious performance problems and sometimes to
stability issues (internal application errors due to the CodeScene database being hosted on a
distributed file system). For this reason, you should avoid hosting CodeScene on Azure
App Service and/or via Azure Containers.

• 4 vCPUs are enough for most workflows.

1.1.2 Public Cloud (AWS, Azure, et. al.)

For performance and stability reasons outlined in the System Requirements section we don’t recommend
using managed services like Azure App Service or Azure Containers that rely on distributed file storage.

The recommended option is to deploy a plain Linux VM and run CodeScene as a standalone JAR or
a Docker container as described in Installation (page 6).

5

https://azure.microsoft.com/en-us/product-categories/containers/

CHAPTER 1. GETTING STARTED

Security - HTTPS & SSL/TLS certificates

If your instance is open to the general public, using HTTPS is important. CodeScene itself uses HTTP
so you need to put another layer in front of it.

This can be done by using a proxy like nginx (see our example repo) or by using your cloud provider’s
offering, e.g. AWS Beanstalk and ACM or Azure Key Vault.

Another popular option for SSL certificates is the Let’s Encrypt certification authority which makes
it easy to renew certificates automatically - you can find more details about this option in our docker
repository.

1.1.3 Backups

You should backup CodeScene’s database file regularly. Cloned repositories and analysis results may
be recreated by running a new analysis.

The exact mechanism for performing backups depends on the deployment option you’ve chosen. A
simple Cron job might work just fine. For the “public cloud” option, it’s usually better to use a managed
solution, e.g. Azure Backup.

1.2 Installation

There are two recommended options for installing CodeScene:

• Standalone Jar : see the section Run the Standalone CodeScene Application below.

• CodeScene inside a Docker container : We have an example on a docker file here, including an
example on how to configure SSL.

We also support running CodeScene in Tomcat but it’s better to choose the other installation options if
possible.

1.2.1 Install the Supporting Tools

You need the following prerequisites to run CodeScene:

• A Java run-time (or JDK if you run from the command prompt), 64-bit version, at least Java 1.8
u162. You ensure you have the right Java version by typing java -version in a command prompt.

• Have a Git client on your path since the tool will assume there’s an executable named git somewhere.
Your Git client has to be at least version 2.14. You ensure you have the right Git client version by
typing git --version in a command prompt.

Please note that you can specify a custom Git client in the Configuration section once you login to
CodeScene.

See also Configure your Environment (page 10) for Git SSH key instructions.

1.2.2 Run the Standalone CodeScene Application

The easiest way to get CodeScene up and running is by launching the standalone JAR:

java -jar codescene.standalone.jar

This will launch a web application that listens on port 3003 (you can override that by setting a different
port through the environment variable CACS_RING_PORT.

Once you’ve launched the codescene.standalone.jar you just point your web browser to localhost:3003 to
access CodeScene.

6

https://github.com/empear-analytics/docker-codescene-nginx-self-signed-ssl
https://aws.amazon.com/premiumsupport/knowledge-center/elastic-beanstalk-https-configuration/
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/tutorial-secure-web-server
https://github.com/empear-analytics/docker-codescene-nginx-self-signed-ssl#prepare-the-host-and-reverse-proxy-configuration-for-letsencrypt-ssl-certificate
https://github.com/empear-analytics/docker-codescene-nginx-self-signed-ssl#prepare-the-host-and-reverse-proxy-configuration-for-letsencrypt-ssl-certificate
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/backup-recovery
https://github.com/empear-analytics/docker-codescene-nginx-self-signed-ssl

CHAPTER 1. GETTING STARTED

Define the Root Paths for Persistent Data

CodeScene creates a local database for the analysis configurations. By default the database file
resources/caacs_enterprise.db.mv.db is created in the working folder (that is, the directory where
you run CodeScene).

You can override the default and provide a custom path through the environment variable
CODESCENE_DB_PATH. Note that you need to specify a complete file name. As an example, if you specify
/User/Services/CodeScene/configuration, CodeScene will create a persistent database file named
/User/Services/CodeScene/configuration.mv.db.

CodeScene will also need access to a writeable file system where it can store analysis results and cloned
Git remotes. In some environments (e.g. Docker) you might want to constrain those paths so that users
don’t specify paths to a non-persistent storage. You do this by two optional environment variables:

1. CODESCENE_ANALYSIS_RESULTS_ROOT : Specifies the root path to where all analysis results will be
written. CodeScene auto-generates a folder for each analysis project.

2. CODESCENE_CLONED_REPOSITORIES_ROOT : Specifies the root path to where Git remotes will be
cloned locally. CodeScene auto-generates a folder for each analysis project.

The advantage of specifying these two optional environment variables is that the user won’t have to deal
with configuring the result paths – it’s automated – and analysis results are always stored to a known
partition.

Configure the available Memory

RAM is a critical resource for CodeScene. In most cases 4G of RAM is more than enough, but if your
codebase has large files (we mean really large, like +30,000 lines of code) you may need more memory
to run the X-Ray analyses.

Note that Java’s virtual machine has a system dependent maximum that is typically lower than the total
RAM available. That means you need to specify a higher threshold yourself when starting CodeScene.
You do that by providing the -Xmx flag to java.

Here’s an example that shows how to allocate 10 gigabyte of RAM for CodeScene:

java -Xmx10G -jar codescene.standalone.jar

Note that the order of the arguments matter in this case.

Avoid missing stack traces

In some situations, the JVM skips stack trace generation and you won’t get full stack strace details which
may make troubleshooting more difficult. You’ll find a message indicating this happened in the logs,
e.g.:

java.lang.ClassCastException
Stack trace of root exception is empty; this is likely due to a JVM optimization that can be␣
→˓disabled with -XX:-OmitStackTraceInFastThrow.

You can disable this optimization and make sure stack traces are always visible by using the -XX:-
OmitStackTraceInFastThrow flag when starting the application:

java -XX:-OmitStackTraceInFastThrow -jar codescene.standalone.jar

Optional: Run CodeScene in Kubernetes

Finally – and entirely optional – the CodeScene standalone JAR could also be run on Kubernetes. This
might be an option if your organization already uses Kubernetes as a container management tool.

7

CHAPTER 1. GETTING STARTED

Follow the instructions here to setup CodeScene on Kubernetes.

Optional: Specify a Path Prefix

In some network configurations, it may be necessary to access CodeScene with a path prefix, for example
as internal.example.com/codescene. This might arise when CodeScene is one of several services running
on the same server or it is not possible to attribute a dedicated subdomain for CodeScene. While a proxy
server can be configured to correctly direct incoming requests, all the links in CodeScene, by default, are
relative to the root path, /.

To avoid this, CodeScene can be run with the CODESCENE_PATH_PREFIX environment variable.
The value supplied will be preprended to all internal CodeScene links. If used, the pass prefix value
should begin with a slash but contain no other slashes, spaces or non-alphanumeric characters besides
- or _. Thus, for internal.example.com/codescene, CODESCENE_PATH_PREFIX would be set to
/codescene.

(Note that this variable should not be used when running in Tomcat.)

1.2.3 Run CodeScene in Tomcat

CodeScene is delivered as a WAR file (Web application ARchive). We recommend that you deploy it
using Tomcat (https://tomcat.apache.org/index.html).

Specify a file folder for the database

CodeScene uses an embedded database. That means, you don’t have to install any database or drivers
yourself. However, you need to specify a path to a file folder where CodeScene is allowed to store its
database. Here’s how you configure Tomcat to do that:

1. Open the file context.xml located under the conf directory in your Tomcat installation.

2. Add an <Environment> tag to context.xml that specifies the path to a folder you want to use for
the database (see the example below).

3. Save context.xml.

Here’s an example on how context.xml may look on a Windows installation (note that you need to modify
the path to fit your environment):

<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
<Environment name="empear.dbpath"

value="C:\\some\\path\\to\\the\\database\\empear.codescene"
type="java.lang.String"/>

</Context>

In case you run on a Linux-based system, you just specify a different path format. For example:

<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
<Environment name="empear.dbpath"

value="/Users/adam/Documents/Empear/deployment/empear.codescene"
type="java.lang.String"/>

</Context>

NOTE: Please ensure that Tomcat has write access to the folder you specify.

8

https://github.com/empear-analytics/codescene-kubernetes
https://tomcat.apache.org/index.html

CHAPTER 1. GETTING STARTED

DB username and password

Optionally, you can specify a custom username and password to access the database. By default, Code-
Scene uses the ‘sa’ user with an empty password.

Add empear.dbuser and empear.dbpassword to the Context environment properties to customize DB
username/password.

Deploy the codescene.war

Once Tomcat is up and running, with your modified context.xml, you just copy the codescene.war to
the webapps folder in your Tomcat installation.

Access CodeScene

By default, Tomcat will launch CodeScene on port 8080 and at the path /codescene/. If you’re logged in
on the server, you access the application on http://localhost:8080/codescene/login. You should see the
activation screen in your web browser (see Fig. 1.1).

Fig. 1.1: The first time your login you are prompted to activate the application.

Enter the credentials you received in your license file. You’re now ready to login (see Fig. 1.2).

The first time you login, you use the same credentials to login as you used to activate the application.
That is, give your CodeScene Username as User Name and your CodeScene License Key as Password.

You’re now up and running with CodeScene!

1.2.4 Configure additional users

You are granted administration privileges each time you login with your license credentials (note that
you can do that at any time, for example to administrate users).

You can add new users and assign them roles in the global configuration. Users and Roles (page 187)
describes this in greater detail.

9

http://localhost:8080/codescene/login

CHAPTER 1. GETTING STARTED

Fig. 1.2: Once you’ve activated the tool you’re ready to login.

1.3 Configure Your Environment

1.3.1 Setup an SSH Key for Git

CodeScene operates on local clones of your Git repositories. CodeScene does an automated git pull before
an analyses, which lets you see the latest changes reflected in your analysis results. This means you need
to grant CodeScene access to your repository origins. You do that by providing an SSH key (see for
example https://git-scm.com/book/be/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key).

NOTE: If you chose to run CodeScene in Tomcat, the SSH key has to be associated with the Tomcat
user since that’s the user who will access the Git repositories.

1.3.2 Using Basic Authentication for Git

Using an SSH key is the preferred alternative.

Another option is to use basic authentication with username and password set in the git clone URL for
every CodeScene project, e.g. https://user:password@github.com/my-org/my-repo.git.

This is less secure and not recommended as a default option.

1.3.3 Persistent Authentication Sessions

CodeScene stores user sessions in memory which means that users have to log in every time the application
process is restarted.

Sometimes, it can be useful to avoid re-authentication, especially when you run CodeScene under a
system user for monitoring purposes (Dashboard view).

In that case, you can turn on “persistent” authentication via browser cookies by setting
AUTH_SESSION__ENCRYPTION_KEY environment variable. Encryption keys must be 16 char-
acters long! User session stays valid for 14 days. If you want to change this interval, you do so via
AUTH_SESSION__MAX_AGE_SECONDS environment variable.

10

https://git-scm.com/book/be/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key

CHAPTER 1. GETTING STARTED

by setting encryption key you make users sessions persistent across restarts
export AUTH_SESSION__ENCRYPTION_KEY="1234567890abcdef"

optionally, you can change max-age too
export AUTH_SESSION__MAX_AGE_SECONDS=120

1.3.4 Set up a Proxy Server

If CodeScene is running behind a proxy server, you might need to specify the proper configuration.

Whenever you’re trying to login or activate the license, Codescene contacts the license server to check if
the license is valid and to update license limitations.

Without the correct proxy configuration, CodeScene won’t be able to check the license and update the
license limitations in case they were changed on the server and will show an error message (unless you’re
in offline mode - more on that later).

The user can provide the proxy configuration when logging in. If the license check is successful and
the user is admin, the proxy configuration will be automatically saved in the global config for future
connections.

Proxy Without Authentication

If you use a proxy server that does not require authentication, CodeScene might be able to automatically
detect the configuration based on your operating system settings. You can always check current the proxy
configuration in Configuration -> License -> Proxy Server.

Proxy with Basic authentication

If your proxy server is configured to use Basic authentication, you need to provide a username and
password. Please, fill in the ‘User’ and ‘Password’ fields in Configuration -> License -> Proxy Server.

Proxy with Kerberos Authentication

CodeScene supports proxy servers with Kerberos authentication.

As long as you have a valid TGT ticket in your system’s Credentials Cache, CodeScene should be able
to authenticate with your Proxy Server.

This is usually done with kinit command:

kinit <principal_name>

However, TGT tickets have limited validity (usually 24 hours). If you aren’t able to refresh them
automatically, you need to specify the username (principal) and password in Configuration -> License
-> Proxy Server.

If you don’t want to store username/password in CodeScene you can also create a keytab file and specify
it in login.conf in CodeScene root folder as follows (make sure to put proper principal and keyTab file
path):

com.sun.security.jgss.initiate {
com.sun.security.auth.module.Krb5LoginModule required client=TRUE useTicketCache=true␣

→˓doNotPrompt=false refreshKrb5Config=true
principal=codescene useKeyTab=true keyTab=codescene.keytab;

};
com.sun.security.jgss.accept {

com.sun.security.auth.module.Krb5LoginModule required client=TRUE useTicketCache=true␣
→˓doNotPrompt=false refreshKrb5Config=true

11

CHAPTER 1. GETTING STARTED

principal=codescene useKeyTab=true keyTab=codescene.keytab;
};

You can learn more about using Kerberos in Java applications here: Use of Java GSS-API for Secure
Message Exchanges Without JAAS Programming:.

Other Authentication Mechanisms

If you’re using another proxy authentication mechanism and you’re not able to make it work with
CodeScene, please let us know. We’ll do our best to add support for this authentication mechanism to
CodeScene.

Offline Mode

If you are unable to provide a proper proxy configuration, you don’t want to let Codescene reach the
Internet, or you simply don’t have an Internet connection for a limited period of time, you still may run
CodeScene in offline mode.

If CodeScene is unable to activate its license or verify the user’s login, it will show an error message
with a checkbox for activating offline mode. Administrators can also turn on offline mode globally in
Configuration.

Offline mode is limited to the period of the current subscription term (billing period). When your current
billing period ends, CodeScene needs Internet access to verify your license. If you need to run in offline
mode for an extended period of time, you will have to pay for the whole period in advance.

Please note that offline mode should be regarded as an exceptional use case, either for emergencies or
situations with specific needs. To ensure a smooth experience, users are encouraged to provide proper
configuration. Please contact us if you need more help with network/proxy configuration.

Connection Timeouts

By default, CodeScene uses a 5000 ms timeout for both connection timeout and socket time-
out. You can customize these settings with the LICENSE_CHECK_CONN_TIMEOUT and LI-
CENSE_CHECK_SO_TIMEOUT environment variables. This can be useful if you’re running Code-
Scene in a high-latency environment or in permanent offline mode.

You can also enforce a hard timeout on the whole duration of license check request with LI-
CENSE_CHECK_TOTAL_TIMEOUT environment variable. If you don’t specify total timeout com-
puted value 1.5 * (connection timeout + socket timeout) is used as a default. Total timeout gives you a
complete control over the license check duration. You cannot achieve this using just connection timeout
and/or socket timeout. The main difference is in inability to control DNS resolution time using either
connection or socket timeout.

1.4 Run an Analysis

1.4.1 Creating a New Project

Your first step is to create and configure a project. You do that by clicking on the “New Project” button
(see Fig. 1.3).

Once you click the “Create New Project” button you are prompted with six choices (see Fig. 1.4):

1. Specify Paths if you plan to analyze just one or two repositories and enter the paths manually.

2. Scan Directory to auto-import multiple repositories into your analysis project.

3. Specify Remotes let you specify Git URLs (e.g. to GitHub) and CodeScene automatically clones
the repositories.

12

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
https://stackoverflow.com/questions/7360520/connectiontimeout-versus-sockettimeout
https://stackoverflow.com/questions/7360520/connectiontimeout-versus-sockettimeout

CHAPTER 1. GETTING STARTED

Fig. 1.3: Click on the “Create New Project” button to create a project and configure it for analysis.

4. Clone Existing to copy an existing analysis configuration into a new configuration. This is useful
if you want to provide different analysis views, for example for variying time periods, for the same
codebase.

5. Use Google Repo to let the Repo tool manage your repositories based on a remote manifest.

6. Import Configuration to create a new project based on a previously exported configuration.

If you chose to Specify Paths, just type (or copy-paste) the path to your local Git repository clones. You
can add as many repositories as you need.

Once you click “Continue”, you arrive at the “Project Details” page (see Fig. 1.5). There are a number
of important configuration options in this step. The Configuration (page 168) include advice on how you
select an analysis period. When in doubt, specify the earliest possible starting date as indicated in the
help text.

NOTE: It’s important that the Analysis Results file folder that you specify is writable for the Tomcat
user; all analysis result content will be stored there.

Once you’ve created the project you’ll arrive at its configuration details. And yes, there’s a lot, really
a lot, of configuration parameters. The good news are that you normally don’t have to change any of
these parameters since they all have sensible defaults. However, you want to look at your Analysis Plan.
Go to the “Analysis Plan” configuration as shown in Fig. 1.6 and specify a suitable interval, for example
once every night.

From now on, CodeScene will run all analyses automatically according to your plan. However, you
probably don’t want to wait for the next scheduled run to get results on your codebase. That’s why
CodeScene supports a forced analysis as described in the next section.

1.4.2 Force an Analysis

CodeScene lets you run an analysis on demand. Just go to the dashboard and press the Run button as
illustrated in Fig. 1.7.

13

CHAPTER 1. GETTING STARTED

Fig. 1.4: Specify the paths to the Git repositories you want to analyze.

Fig. 1.5: The detailed configuration lets you specify analysis period and a result path.

14

CHAPTER 1. GETTING STARTED

Fig. 1.6: Your analysis plan specifies how often an analysis is run.

Fig. 1.7: Press the Run button to force an analysis.

15

CHAPTER 1. GETTING STARTED

1.4.3 Run a Retrospective

CodeScene also includes the option to run an analysis tailored to a Retrospective. This feature is located
on the “History” tab of your analysis project as illustrated in Fig. 1.8.

Fig. 1.8: A retrospective lets you analyze the development activity in the past sprint/iteration.

For a detailed description of the use cases for Retrospectives, read the article The Happy Marriage of
Retrospectives and Software Evolution.

1.4.4 Find your Way Around

We’ve worked to make CodeScene as easy as possible for you to use. Basically, you just need to remember
three things:

1. Click the cogs button of your project (see Fig. 1.9) to access details, configuration, and to force
analyses.

Fig. 1.9: The cogs button in the project tile takes you to the project details and configuration.

2. Click on the tile representing your project to inspect your analysis results.

3. Click on the “CODESCENE” logo in the top-left corner to return to the main screen, should you
ever get lost.

1.4.5 Analyse Projects with Git Submodules

Submodules are a Git mechanism that allow you to include a complete Git repository as a subdirectory
of another Git repository. CodeScene can analyse submodules-based projects too, but you need to enable
that support when creating a project; by default, submodules are not included as they might reference
third-party code that you don’t want in your analysis.

You enable the analysis of Git submodules when creating a new CodeScene project:

16

http://empear.com/blog/happy-marriage-of-retrospective-and-software-evolution/
http://empear.com/blog/happy-marriage-of-retrospective-and-software-evolution/

CHAPTER 1. GETTING STARTED

Fig. 1.10: Enable Git submodules when creating a project.

CodeScene’s behaviour for projects with submodules is:

• Creation: Clone all included submodules automatically.

• Continuous Analyses: Fetch the latest changes to all submodules automatically.

• Webhooks: If you integrate with pull requests, then CodeScene sets up webhooks for the sub-
module repositories too.

1.5 Resolve Developer Aliases

The social metrics need to identify each developer that contributes code. Unfortunately, it’s common
that developers have multiple Git aliases, which will bias the social metrics.

CodeScene provides two solutions to this problem. The simplest is to use the Developer identity mapping
interface. (See Developers and their Aliases: Mapping Version-Control Names to People (page 183).)

CodeScene also supports Git mailmaps and will automatically use them if they are present. To use
mailmaps, add the .mailmap file to the root of your repository. It specifies a mapping from multiple
aliases to one for each developer as shown in Fig. 1.11.

Fig. 1.11: Resolve aliases through a mailmap.

17

CHAPTER 1. GETTING STARTED

Note that mailmaps operate at a lower level, so changes in mailmaps will not be visible in the Developer
identity mapping interface.

Read the Git Documentation on mapping authors for a description on how to configure the .mailmap.

1.6 Use a Reverse Proxy for HTTPS Support

CodeScene doesn’t implement HTTPS support itself. Instead we recommend that you put a reverse
proxy in front of the application if you need encryption. We recommend Nginx as the reverse proxy. The
Nginx website provides documentation on configuring Nginx for HTTPS.

Here is a brief example of an Nginx proxy configuration:

http {

server {
listen 80;
server_name codescene.example.com;
location / {

return 301 https://$host$request_uri;
}

}

server {
listen 443 ssl;
server_name codescene.example.com;

ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;
ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;

location / {
proxy_pass http://localhost:3003;
proxy_redirect http:// $scheme://;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

}
}

The proxy_redirect used above will rewrite all HTTP redirects from upstream to the current scheme, ie
HTTPS. The browser will then receive the correct scheme directly, avoiding unnecessary round-trips.

There is also a Docker-based sample project that provides CodeScene wrapped by an Nginx reverse proxy
with a self-signed certificate. It composes a CodeScene container and an Nginx container using a small
docker-compose.yml file.

1.7 Upgrade Your License

Note: To get a new license key or upgrade existing license limitations (number of active authors) it’s
best to use our Customer Portal:.

Following instructions show how to active the license key you receive in CodeScene. To upgrade from a
trial license (or to a higher license category) you can simply and your license key will remain the same.

1.7.1 Upgrade from an Expired License

CodeScene will automatically prompt you for a new license once an existing license expires. Just enter
your new credentials and everything will be up and running again. All your analyses and user configu-
rations are preserved so you can login with any user after the license upgrade.

18

https://git-scm.com/docs/git-shortlog#_mapping_authors
https://nginx.org/en/download.html
http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_redirect
https://github.com/empear-analytics/docker-codescene-nginx-self-signed-ssl
https://portal.empear.com/app/portal

CHAPTER 1. GETTING STARTED

1.7.2 Upgrade from a Previous License

You may already have an activated instance of CodeScene running. To upgrade from a trial license (or
to a higher license category) you can simply use our Customer Portal: and your license key will remain
the same. Note that you’l need a working Internet connection to propagate changes from our license
server to your CodeScene installation.

Alternatively (especially if you aren in offline mode), you can request a new license key: and activate
the new license key as follows:

1. Login as an administrator. Login with the credentials from your existing license to get administra-
tion privileges.

2. Click on ‘Configuration‘ in the top menu and go to the License tab as illustrated by Fig. 1.12.

3. Enter the new license credentials you received from Empear.

4. Press the Activate New License button and your new license becomes activated.

Fig. 1.12: Enter your new license credentials on the Configuration page.

1.8 Troubleshooting: Diagnostics, Errors, and Logs

We work hard to ensure that CodeScene just works. This means you point CodeScene to your codebase,
press a button, and get the analysis results.

If you’re facing an unexpected issue or application behavior you can use detailed analysis diagnostics
and logs to gather more data and share them with Empear support.

19

https://portal.empear.com/app/portal
mailto:support@empear.com

CHAPTER 1. GETTING STARTED

1.8.1 Analysis Errors

On the rare occasion when an analysis fails, we make sure you know about it so that you can take
corrective actions.

On the main landing page, CodeScene displays two kinds of notifications:

• The first notifications, with the triangular warning sign, are not for troubleshooting CodeScene.
They concern the codebases being analyzed: CodeScene has detected something that requires your
attention. It’s time to check the analysis dashboard.

• The second kind indicate that there was a problem when running the analysis.

Fig. 1.13: There are two kinds of notifications on the main landing page.

When you click on the analysis error icon, you can see what the problem or problems are.

Fig. 1.14: Click on the warning and error icons to retrieve the detailed diagnostics.

We distinguish between errors and warnings during an analysis:

• Errors: An analysis error means that we couldn’t complete the analysis since we didn’t manage
to fetch all the data we need. This is often due to an external data source that isn’t available.
Examples include 3rd party integrations such as Jira.

• Warnings: A warning means that the analysis completed but we did identify some conditions that
requires your attention. A common example is that the Git repositories couldn’t be updated, which
means that your latest code changes might not be reflected in the analysis. Another example might
be parser errors when scanning the source code.

We do our best to keep the error messages informative. Please get in touch with our support if an error
message or remedy isn’t clear – we consider error messages that are hard to understand an internal error,
and love the opportunity to improve them. Click on Download detailed diagnostics to retrieve a file that
can be shared with Empear for further inspection.

20

CHAPTER 1. GETTING STARTED

1.8.2 Logs

CodeScene logs contain important clues about errors and the application behavior and it’s always a good
idea to attach them to your support requests.

Log levels

The default log level is ERROR.

To enable more detailed logging you have two options:

• Set CODESCENE_LOG_LEVEL environment variable: supported levels are ERROR, WARN, INFO,
DEBUG, TRACE. A good default level is INFO (but make sure to check the volume of logs
CodeScene generates). This setting requires a restart.

• Check Enable detailed traces in Configuration -> System, as shown in the next figure. Note that
this sets log level to TRACE which is very verbose. It’s useful for a temporary debugging session.
This setting doesn’t surive a restart.

Where can I find the logs?

CodeScene logs to standard output.

The way you retrieve logs depends on how you run it (page 6):

• Standalone JAR: standard output - you may want to redirect it to a file.

• Docker container: retrieve logs via the docker logs command.

• Tomcat: logs are stored in the <TOMCAT_HOME>/logs/ directory. There’s usually a single big
catalina.out file which contains aggregated logs from the beginning or a particular point in time
(after you cleared the log). There are also many localhost.YYYY-MM-DD.log files which can
contain other useful information, especially about deployment-time errors.

21

Chapter 2

Hands On Behavioral Code Analysis:
CodeScene Use Cases

CodeScene is different from the traditional code analysis tools you might have come across earlier. So
follow along as we explain how you use the analysis information and how you integrate CodeScene in
your organization’s daily work to get the most out of the tool.

2.1 What is a Behavioral Code Analysis?

Behavioral Code Analysis was pioneered by the research and techniques from the books Your
Code As A Crime Scene and Software Design X-Rays: Fix Technical Debt with Behavioral
Code Analysis by Adam Tornhill, Empear’s founder.

The main difference between CodeScene’s behavioral code analysis and traditional code scanning tech-
niques is that static analysis works on a snapshot of the codebase while CodeScene considers the temporal
dimension and evolution of the whole system. This makes it possible for CodeScene to prioritize techni-
cal debt and code quality issues based on how the organization actually works with the code (we’ll give
specific examples soon – promise).

In addition, CodeScene goes beyond code as it considers the organization and people side of the system.
This gives you valuable information that is invisible in the source code itself, such as measures of team
autonomy and off-boarding risks; factors that increase in importance with the scale of the development
organization.

With the differences covered, let’s see how to get started.

2.2 The Two Main Use Cases for Behavioral Code Analysis

CodeScene is used for two main use cases that are independent of each other:

1. Optimize Your Software Delivery: CodeScene comes with all the tools and features you need in
order to optimize your software delivery. This includes analyses to prioritize technical debt, measure
improvements, detect delivery risks and inter-team coordination bottlenecks, and much more. This
information is used regularly and, typically, integrated in your organizations daily work.

2. Ad-Hoc Strategic Analyses: Some analyses in CodeScene aren’t intended for daily use, but are there to
support you when you need data to guide and support your decisions. These analyses include CodeScene’s
Team Planning with the On- and Off-Boarding Simulation (page 159) that lets you mitigate product risks,
and CodeScene’s change coupling analyses (see Architectural Analyses (page 100) that help you evaluate
and optimize your software architecture based on how your system evolves.

In this tutorial we will focus on the first use case, and leave the second one to the Guides (page 49).

22

https://pragprog.com/book/atcrime/your-code-as-a-crime-scene/
https://pragprog.com/book/atcrime/your-code-as-a-crime-scene/
https://pragprog.com/book/atevol/software-design-x-rays/
https://pragprog.com/book/atevol/software-design-x-rays/

CHAPTER 2. HANDS ON BEHAVIORAL CODE ANALYSIS: CODESCENE USE CASES

Fig. 2.1: Behavioral Code Analysis builds on two main data sources plus an optional integration with project
management tools like Jira.

23

CHAPTER 2. HANDS ON BEHAVIORAL CODE ANALYSIS: CODESCENE USE CASES

2.3 A Workflow to Manage Technical Debt

Most of the time you will navigate via the main analysis dashboard in CodeScene, shown in Fig. 2.2. To
learn more about the dashboards, check out CodeScene’s Dashboards: The Status of Your Codebase at a
Glance (page 49).

Fig. 2.2: CodeScene’s interactive analysis dashboard presents the key metrics at a glance.

However, you will use CodeScene differently the first times you run an analysis and start to explore a
new codebase. Generally, a behavioral code analysis passes through three different stages:

1. The first time you analyse a codebase you spend some time building up a holistic overview of the
code. As part of this stage, you use CodeScene to identify and prioritize technical debt. This stage is
partly exploratory but CodeScene guides you along the way.

2. In the second stage your organization acts on the findings you have identified. You use CodeScene to
follow-up and measure the effect of any code improvements or organizational changes to ensure you get
a real – measureable – effect.

3. In the third stage, your technical debt is known, measured, and you use CodeScene to supervise it
to ensure that no unexpected reckless debt is taken on. You might also use CodeScene to optimize your
delivery by prioritizing code to review or direct testing activities based on CodeScene’s risk prediction
algorithms.

All of these stages are reflected in CodeScene. Let’s start with the first one, technical debt prioritization.

2.3.1 Identify and Prioritize Technical Debt in Your First Analyses

We recommend starting by exploring your hotspots using the interactive map (see Hotspots (page 56)),
as shown in Fig. 2.3.

The interactive map helps you build a high-level mental model of what the code looks like. From there,
you can zoom in on the hotspots. The Code Health score helps you make a quick assessment on the
quality of the hotspot code. In general, if a hotspot’s Code Health is below 8, it’s worth digging deeper.

The reason you want to focus on hotspots is because they identify the parts of your code where most of
your development activity is as measured by version-control data. You see an example in Fig. 2.4.

24

CHAPTER 2. HANDS ON BEHAVIORAL CODE ANALYSIS: CODESCENE USE CASES

Fig. 2.3: Explore your codebase through the interactive hotspot map.

Fig. 2.4: All codebases evolve according to a power law, which means most development activity is in a relatively
small part of the code.

25

CHAPTER 2. HANDS ON BEHAVIORAL CODE ANALYSIS: CODESCENE USE CASES

Fig. 2.4 shows the change frequency of each module in a codebase. As you see, the change frequency
forms a power law curve, and this is a pattern we at Empear have found in every single codebase we
have analyzed; it is the nature of software evolution. What this means to you, is that most development
activity is going to be in a relatively small part of your codebase. Hotspots identify those parts.

A hotspot is the code where most of your teams development activity is. Hence, any technical
debt you might identify there is likely to have a high interest rate. Paying off the technical
debt in a hotspot gives you the most return on code quality improvements.

Once you have identified your top hotspots, you act upon the findings. Let’s explore how CodeScene
supports you in this stage.

2.3.2 Act on the Identified Technical Debt

Now, here’s an important aspect of hotspots: just because a piece of code is worked on frequently, that
doesn’t mean it’s a problem. If you inspect your top hotspots and the code in them looks good, then
you are in a very good position; the code you work with the most is healthy, which means it’s easy to
evolve and understand. However, more often than not, the opposite tends to be true.

To find out if there is any technical debt in your hotspots, you request a Virtual Code Review (see Code
Health – How easy is your code to maintain and evolve? (page 64)). You then run an X-Ray analysis to
get specific, actionable findings in case the identified hotspot is a large file (see X-Ray (page 82)). Fig.
2.5 shows one example.

Fig. 2.5: Act on the hotspots by using the deeper analyses, and capture the outcome of your investigation in a
goal.

Using CodeScene’s Code Health score, you get a quick assessment on how healthy the code is. A low
health, e.g. anything below ‘7, is likely to be expensive in terms of future development as any technical
debt in a hotspot comes with a high interest rate.

The key is to use CodeScene to dive deeper into a hotspot, and then capture the outcome of your
investigation in a goal. Goals are specified using CodeScene’s Intelligent Notes, which is a core concept
that makes technical debt both transparent, contextual, and – most important – actionable.

Specify Goals for each hotspot using CodeScene’s Intelligent Notes – the Goals enable several
other important features.

26

CHAPTER 2. HANDS ON BEHAVIORAL CODE ANALYSIS: CODESCENE USE CASES

Intelligent Notes are described in detail in Manage Hotspots and Technical Debt with Goals (page 70).
Use goals to classify each hotspot as either:

1. code that needs to be cleaned-up (Plan Refactoring),

2. code that might have issues, but is good enough for now. We just want to ensure it doesn’t get
worse (Supervise), or

3. code that is OK as-is, so you no longer wish to see it as a hotspot unless something dramatic
happens to the code (No Problem).

Whatever goal you specify, CodeScene will supervise those goals and inform you on their progress. Let’s
see some examples.

2.3.3 Track and Visualize the State of your Technical Debt

As soon as you specify one or more goals, CodeScene will start to measure against them. You will see
a high-level summary on the dashboards, and also get specific reports on each hotspot as shown in Fig.
2.6

Fig. 2.6: Goals let you see the status of your hotspots in the context of your decisions and plans.

With the assistance of Intelligent Notes, you will see the status of your hotspots in the context of your
decisions and plans. CodeScene will also present a warning on the analysis dashboard in case a goal is
violated. However, feedback loops should be short so CodeScene offers additional warnings. Let’s look
briefly at how you integrate this in a Continuous Integration/Delivery pipeline.

2.3.4 Supervise Your Goals with CI/CD Quality Gates

The earlier you can react to any potential problem or surprise, the better. That’s why CodeScene
offers integration points that let you incorporate the analysis results into your build pipeline (see CI/CD
Integration with CodeScene’s Delta Analysis (page 139)).

Integrate CodeScene in your build pipeline to supervise your goals and prevent that unplanned
technical debt is taken on.

27

CHAPTER 2. HANDS ON BEHAVIORAL CODE ANALYSIS: CODESCENE USE CASES

The CI/CD integration triggers a special type of analysis called a delta analysis. A delta analysis is
quick. The main purpose of this integration is to:

1. Predict the delivery risk of a specific change set in order to prioritize code reviews and testing
activites.

2. Supervise your goals using Quality Gates to ensure that none of the goals you have specified via
Intelligent Notes are violated.

Fig. 2.7: Your goals are supervised in the CI/CD pipeline.

That way, violated goals can be detected before they become an issue. In addition, the status of your
goals is also presented on CodeScene’s inter-product dashboard. Let’s look at an example.

2.4 Track Multiple Codebases and Products on the Inter-Project Dashboard

CodeScene also presents an inter-project dashboard that gives you a high-level overview of all your
products, as shown in Fig. 2.8.

Fig. 2.8: The high-level dashboard shows that status of all your products at a glance.

Using these key metrics on the dashboard, in particular the progress on the goals, point you the prod-
ucts/codebase that you need to inspect in more depth.

28

CHAPTER 2. HANDS ON BEHAVIORAL CODE ANALYSIS: CODESCENE USE CASES

You can also restrict access to certain analysis projects. Checkout CodeScene’s Dashboards: The Status
of Your Codebase at a Glance (page 49) for more details and use cases.

2.5 Subscribe to Auto-Generated Analysis Reports

CodeScene also offers auto-generated PDF reports adapted to different roles such as managers, architects,
and lead developers. Using those reports, each stakeholder gets the most important information delivered
without having to sign into CodeScene.

Fig. 2.9: Get an auto-generated analysis report emailed to you as a PDF or create it on-demand.

The reports too will highlight the progress of your planned goals and intelligent notes. You can create
the on-demand from the inter-product dashboard, or configure CodeScene to automatically email them
to you at specific intervals.

2.6 What’s Next?

This introduction has covered the main usage of CodeScene, which is to prioritize and act on technical
debt. By following the recommended steps in this introduction, you will soon have your technical debt
and the future of your codebase firmly under control.

To dive deeper, we recommend that you also check-out the following analyses:

• Change Coupling: Visualize Logical Dependencies (page 73)

• The Conway’s Law Analysis and the Architectural Analyses (page 100)

• Team Planning with the On- and Off-Boarding Simulation (page 159)

29

Chapter 3

Integrations

CodeScene comes with a set of integrations that let you integrate the analysis information into your
daily workflows. Use the CI/CD integration for quality gates and to streamline code reviews. Use the
Jira integration to measure Lead Times and Throughput.

3.1 Integrate CodeScene in your CI/CD Pipeline

By integration CodeScene into your CI/CD Pipeline and/or your Pull and Merge Requests, you get the
following advantages:

• Prioritize code reviews based on the risk of the commits.

• Specify quality gates for the goals specified on identified hotspots using CodeScene’s Intelligent
Notes.

• Specify quality gates that trigger in case the Code Health of a hotspot declines.

• Get early warnings such a complexity trend increases and detect the absence of expected change
coupling.

The use cases and configuration options are explained in CI/CD Integration with CodeScene’s Delta
Analysis (page 139).

The rest of this guide explains the integrations for the supported platforms.

3.1.1 CodeScene Jenkins Plugin

CodeScene provides an official Jenkins plugin, available via Jenkins Update Center.

More detailed installation and configuration instructions are available here.

3.1.2 CodeScene’s Automated Pull Request Review for GitHub, GitLab, BitBucket and Azure
DevOps

CodeScene integrates in a code review workflow to provide automatic review comments on pull requests.
With this integration, any code health decline or goal violations are caught early. CodeScene will install
webhooks at the remote service that will trigger a Delta Analysis when a pull request is created or
updated. The results of the Delta Analysis will be visible as a comment on the pull request.

To enable this integration, all that is required is API credentials (API Token/App Password) authorized
to modify webhooks and pull requests.

30

https://plugins.jenkins.io/codescene
https://github.com/jenkinsci/codescene-plugin/blob/master/README.md#installation

CHAPTER 3. INTEGRATIONS

Fig. 3.1: CodeScene provides automated pull request comments.

31

CHAPTER 3. INTEGRATIONS

3.1.3 Integrate CodeScene with GitHub Checks API

We provide an open source library that encapsulates the CodeScene integration. Using this library, you
can easily integrate with APIs like GitHub Checks. See the library documentation for configuration
examples and options: codescene-ci-cd.

3.1.4 CodeScene Orb for CircleCI Integration

CodeScene provides an official CircleCI Orb, available directly via the CircleCI Orb Registry.

3.1.5 CodeScene Integration with Gerrit

You can integrate with Gerrit using the following options:

1. Webhooks: Enable the webhooks for Gerrit in your CodeScene project configuration. This adds
automated review comments to Gerrit’s patch sets.

2. Build Bot: Use CodeScene’s Jenkins plugin as a code review bot (+1).

One important note on the Gerrit integration: Gerrit provides a staging area for code to be reviewed.
This staging area is kept separate from the main, authorative Git repository. As a consequence, the
commits for a delta analysis aren’t available in the main Git repository, but in Gerrit’s mirror of the
repository.

CodeScene lets you resolve this by specifying a different origin_url and a specific change_ref to fetch
before the delta analysis is run. Here’s an example:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet", "origin_url":
→˓"gerrit.mycompany.com:39429/dev/wopr", "change_ref": "refs/changes/82/577659/7"}' http://
→˓localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -H "content-type:␣
→˓application/json"

That is, CodeScene will fetch a specific change set from Gerrit and then run the delta analysis as indicated
by the other parameters you provide.

3.2 Integrate Costs and Issues into CodeScene (Jira, Trello, Azure DevOps and GitHub Issues)

CodeScene’s provides an optional integration to Jira, Trello, Azure DevOps or GitHub Issues. The
integration has the following pre-requisites:

• Issue numbers are included/referenced in the commit messages.

• You use labels and/or issue types to distinguish different kinds of work (e.g. Bugs, Features).

When present, CodeScene’s Jira, Trello, Azure DevOps and GitHub Issues integrations let you measure:

• Accumulated costs per hotspot and sub-system.

• Trends by work type, such as “Planned” versus “Unplanned” work.

CodeScene’s cost analyses let you reason about the technical and organizational findings from
a financial perspective. For example, how much time do you spend on defects in your top
hotspots? What amount of work is unplanned? And what happens over time?

CodeScene supports multiple cost models depending on the data you have available such as cycle times,
story points, or time spent. CodeScene can deduce costs automatically based on your development
history, so you don’t even need to have developers reporting their time to be able to get a detailed view
of your development costs. We cover all options and provide our recommended setup in this guide. Let’s
start by looking at the overall model.

32

https://github.com/empear-analytics/codescene-ci-cd#configure-github-actions-for-codescene-delta-analysis
https://circleci.com/orbs/registry/orb/empear/codescene-ci-cd

CHAPTER 3. INTEGRATIONS

3.2.1 CodeScene’s Cost Model

CodeScene offers a breakdown of the development costs on three separate levels: file-, architecture-, and
system-level. The file level corresponds to the hotspots, the architecture level accumulates costs on a
component/service/module level, whereas the system level presents the cost trend as aggregated for all
application code.

Fig. 3.2: CodeScene calculates cost trends on a file-, architecture-, and system-level.

Using CodeScene’s cost model, you get the specific development costs on each hotspot. Use this data to
inform re-work decisions and to communicate the costs of technical debt to the business:

For larger hotspots, it might not be realistic – nor financially wise – to refactor a whole module. For
that purpose, CodeScene comes with its X-Ray analysis that lets you break down the defect statistics to
a detailed function level.

3.2.2 Calculating Development Costs: the four options

There are four strategies, and you need to select one of them depending on what data you have in Jira,
Trello, Azure DevOps or GitHub Issues:

• Estimated development time: calculate a cycle time for the number of hours from the time an
issue entered a specific Jira state until the last commit is done on this issue. The cycle time is
then adjusted for the number of hours in a typical work day. That is, a cycle time of 3 days
has a cost of 3 * 8 hours. In addition, CodeScene distributes the total costs proportional to the
change impact when multiple modules/files are modified for the same issue. This cost model lets
CodeScene calculate costs as opposed to rely on time reported in Jira, which is often incorrect,
incomplete, or both.

33

CHAPTER 3. INTEGRATIONS

Fig. 3.3: CodeScene calculates cost per hotspot, including both feature and defect data.

Fig. 3.4: CodeScene breaks down defect statistics from a hotspot file to a function level.

34

CHAPTER 3. INTEGRATIONS

• Issues: the number of issues associated with a given file or architectural component. Use Issues to
get a summary and inspect general trends, but without assessing actual time spent.

• Points: the cost of an Issue in /Story points/. Use this option if you keep track of story points
and use them to communicate within the organization.

• Minutes: the cost expressed in time. This method requires that time has been reported on the
specified cost-field in JIRA. Use this option if you have accurate data in JIRA on how much time
you have spent on each issue.

3.2.3 Export Cost Data to Excel/CSV

All cost trends in CodeScene provides a button that lets you export to a CSV file and explore further
details in a spreadsheet application.

NOTE: The exported data use the internal cost units. For issues and story points, this unit is always
the unit of presentation in the graphs. However, for time-based cost units like Estimated development
time or Minutes, the exported cost is in minutes. This typically differs from the values presented in the
graphs since CodeScene converts them to more suitable visual presentations (e.g. hours, days).

Fig. 3.5: Export CodeScene’s cost data to CSV.

3.2.4 Configuration

Connect CodeScene to Jira

Jira is enabled and configured per project. Navigate to the “PM Integration” tab in your project’s
configuration and select “Jira”:

Fill in your Jira credentials here. We recommend using a Jira API token as the password.

35

CHAPTER 3. INTEGRATIONS

Fig. 3.6: Start by selecting “Jira”

You also have to specify a cost model that determines how CodeScene calculates the costs. The cost
model options are described earlier in this document.

Once you press “Save and Continue”, you are presented with the detailed configuration options. See
further below in this document for a detailed walkthrough of the configuration otpions.

Connect CodeScene to Trello

Trello is enabled and configured per project. Navigate to the “PM Integration” tab in your project’s
configuration and select “Trello”:

You need an API Key and an API token from Trello. You generate those credentials via the Trello
app-key.

You also have to specify a cost model that determines how CodeScene calculates the costs. The cost
model options are described earlier in this document.

Once you press “Save and Continue”, you are presented with the detailed configuration options, as
specified below.

Connect CodeScene to Azure DevOps

Azure DevOps is enabled and configured per project. Navigate to the “PM Integration” tab in your
project’s configuration and select “Azure DevOps”:

You need an access token from Azure Devops. See Authenticate access with personal access tokens.

You also have to specify a cost model that determines how CodeScene calculates the costs. The cost
model options are described earlier in this document.

Once you press “Save and Continue”, you are presented with the detailed configuration options, as
specified in the next section.

36

https://trello.com/app-key
https://trello.com/app-key
https://docs.microsoft.com/en-us/azure/devops/organizations/accounts/use-personal-access-tokens-to-authenticate?view=azure-devops&tabs=preview-page

CHAPTER 3. INTEGRATIONS

Fig. 3.7: Configure the information you want to retrieve from Trello.

Fig. 3.8: Configure the information you want to retrieve from Azure DevOps.

37

CHAPTER 3. INTEGRATIONS

Connect CodeScene to GitHub Issues

GitHub Issues are enabled and configured per project. Navigate to the “PM Integration” tab in your
project’s configuration and select “GitHub Issues”.

You need an access token from GitHub with repo permissions. See Creating a token.

Once you press “Save and Continue”, you are presented with the detailed configuration options, as
specified in the next section. Note that the GitHub Issues integration supports only the Issues cost
model.

Specify the Detailed Configuration Options for Jira, Trello, Azure DevOps and GitHub Issues

Fig. 3.9: Configure the information you want to retrieve from Jira.

External Projects: Select one or more Jira projects that CodeScene will use as data sources.

Cost Field: is used for he cost models Points and Minutes, Select the Jira field that has your cost
estimates. If you use Issues or Estimated development timet as cost model, then it is not necessary to
configure Cost Field and you can leave it as is.

Work In Progress Transition Name: Specify the name of the Jira status that indicates that the
development work has started. Often, this is the “In Progress” or “In Development” state.

The Work In Progress Transition Name is relevant for two analyses: 1. If you use Estimated development
time as cost model, then this field is mandatory. 2. Delivery Performance: if you have enabled the delivery
performance module, then this config option is needed to calculate lead times.

Supported Work Types should correspond to the different kinds of issue labels defined in your Jira
project.

Defect Work Types: specify the JIRA labels or JIRA Issue Types that will be regarded as defects.
This configuration is used to calculate defect densities and work type trends.

The Rename Work Types field allows the work types to be mapped to different analytical categories that
you can define yourself. How you do this depends on the type of analysis you wish to perform.

Tip: Rename Work Types to distinguish Planned and Unplanned work

When looking at cost trends, the most interesting distinction is typically between Planned- versus Un-
planned Work.

38

https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line#creating-a-token

CHAPTER 3. INTEGRATIONS

By specifying Rename Work Types option, the Jira labels are translated to the specified label before
being sent to CodeScene. For example, if your Jira project contains Feature and Documentation labels,
like in the illustration above, these can be categorized together as Planned Work, while Bug and Defect
are treated as Unplanned Work; the Refactoring label – which doesn’t have a translation – will be sent
as is. Mapping labels this way can allow you to see more meaningful trends. You are free to map labels
however you like depending on your analytical needs.

3.2.5 Advanced Information: CodeScene’s Cost Distribution

CodeScene’s cost model contains a number of features that reduce bias in the available cost data. For
example, let’s say that you have a Jira issue with the known cost of 100 hours. In that issue, the developer
spent 95% of the time working on one complex hotspot, and then just made a simple tweak to a config
file. How should those 100 hours be split between the impacted files? Assigning “100 hours” as cost to
each file is clearly the wrong thing to do as it exaggerates the development cost of that simple config file.

For this purpose, CodeScene distributes the calculated costs for a specific issue on two orthogonal levels:
1) across impacted modules, and 2) across the relevant types of work.

Distribution across modules: CodeScene distributes the derived costs proportional to the change
impact when multiple modules are modified as part of the same issue. That is, the modules with most
work in a specific issue get proportionally higher costs than modules that had less work. CodeScene
automatically deduces this distribution.

Distribution across issue types: Since a Jira/Trello issue can have multiple issue types and labels,
CodeScene distributes the costs equally across all referenced types of work for the specific issue. This is
relevant to the cost trends in CodeScene. For example, let’s say we have a cost of 100 hours for a specific
issue and entity. The issue has two labels in Trello: Feature and UI. CodeScene will distribute the costs
so that each of those types of work, Feature and UI, get 50 hours as their costs.

NOTE: The cost unit issues is a special case since issues are never split; it doesn’t make sense to say
that the cost of a specific module is “3.25 issues”. Instead CodeScene selects the first known issue type
for that issue and assigns it the cost.

3.3 REST API

NOTE: The REST API is currently in alpha version. This means we are likely to make breaking
changes in the next release. We also plan to expand the API to make more analysis information available.
Contact Empear, and we are happy to share our detailed plans and get your feedback.

You can get the following information from the API:

• The access user

• The rest api documentation url

• Project lists

• Import Project Configuration

• Export Project Configuration

• Single project details

• Update Project by adding/removing git repository urls’

• Update Project by importing development teams

• Analyses list of a project

• Single analysis details

• Files list from analysis in descending order based on order_by value

• Components list from an analysis

39

CHAPTER 3. INTEGRATIONS

• Single components details from an analysis

• Files list from component in descending order based on order_by value

3.3.1 The REST API documentation URL

You can browse the REST API functions here CodeScene RestAPI Functions. Before trying any
functionality, use the Authorize button then fill in your username and password to authenticate.
The version in use is v1

3.3.2 Using CodeScene’s REST API

The REST API user

CodeScene lets you create a user intended to consume the REST API. Login as administrator then
create a new user and assign RestApi role to it as illustrated in Fig. 3.10.
Any user with role Admin, Architect or RestApi can consume the REST API
If you are using LDAP, you need to assign the Admin, Architect or RestApi role. Follow the
instructions from LDAP Roles Settings to assign a role to a LDAP user.
OAuth user accounts are not supported.

Fig. 3.10: Configure a RestApi user to consume the REST API.

To consume the REST API, you need to authenticate using http basic authentication.
The REST API follows the default project access, project access mode and collaborators described in
Project Access Management

Project lists

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects'

Import Project Configuration

curl -X GET --header 'Accept: application/json' -u username:password \
--data "@./project-config.json" 'http://localhost:3003/api/v1/projects/new'

• Replace ./project-config.json with a valid a path to your project configuration, the format is
the one exported by CodeScene

40

../configuration/users-and-roles.html#ldap-roles-settings
../configuration/users-and-roles.html#project-access-management

CHAPTER 3. INTEGRATIONS

• Minimal example for a project where you specify the local path ./
specifiy-path-project-config.json

{
"config": {

"name": "project_name",
"analysis-start-date": "2011-01-01",
"ticketidpattern": "([A-Z]{2,}-\\d+)",
"temporal-coupling-strategy": "by-ticket-id",
"repo-paths": [

"/path/to/my/project"
],
"analysis-destination": "/path/to/save/analisys"

}
}

• Minimal example for a project where you specify the remote git repository urls ./
specifiy-remotes-project-config.json

{
"config": {

"name": "project_name",
"analysis-start-date": "2011-01-01",
"ticketidpattern": "([A-Z]{2,}-\\d+)",
"temporal-coupling-strategy": "by-ticket-id",
"repo-paths": [

"https://my.company.com/mycompany/project1.git",
"https://my.company.com/mycompany/project2.git",
"https://my.company.com/mycompany/project3.git"

],
"gitremotelocalpath": "/path/to/save/repository/",
"analysis-destination": "/path/to/save/analisys"

}
}

• Minimal example for a project where you specify the google repo url ./
google-repo-project-config.json

{
"config": {

"name": "project_name",
"analysis-start-date": "2011-01-21",
"ticketidpattern": "([A-Z]{2,}-\\d+)",
"temporal-coupling-strategy": "by-ticket-id",
"local-path-for-google-repo": "/path/to/save/repository/",
"google-repo-url": "https://my.company.com/mycompany/google-repo-project.git",
"google-repo-manifest-filename": "your_manifest_name.xml",
"analysis-destination": "/path/to/save/analisys"

}
}

Export Project Configuration

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/export/configuration/json'

• Replace {project-id} with a valid id taken from the project list results.

41

CHAPTER 3. INTEGRATIONS

Single project details

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}'

• Replace {project-id} with a valid id taken from the project list results.

Add git repository url’s

curl -X POST --header 'Content-Type: application/json' --header 'Accept: application/json' -u␣
→˓username:password \
--data '{"urls":["https://mycompany.com/projects/p1.git", "https://mycompany.com/projects/p2.
→˓git"]}' \

'http://localhost:3003/api/v1/projects/{project-id}/repository/add'

• Replace {project-id} with a valid id taken from the project list results.

• the body can contain one or multiple git repository url’s

Remove git repository url’s

curl -X DELETE --header 'Content-Type: application/json' --header 'Accept: application/json' -
→˓u username:password \
--data '{"urls":["https://mycompany.com/projects/p1.git", "https://mycompany.com/projects/p2.
→˓git"]}' \

'http://localhost:3003/api/v1/projects/{project-id}/repository/remove'

• Replace {project-id} with a valid id taken from the project list results.

• the body can contain one or multiple git repository url’s

Update Project by importing development teams

curl -X POST --header 'Content-Type: text/csv' --header 'Accept: application/json' -u␣
→˓username:password \
--data "@./teams.csv" 'http://localhost:3003/api/v1/projects/{project-id}/teams/import'

• Replace {project-id} with a valid id taken from the project list results.

• Replace ./teams.csv with a valid a path to your teams configuration, the format is the one
exported by CodeScene, first row of the file is the header

• Example file ./teams.csv

author,team
max,backend
john,backend
sherri,ui

Analysis List of a project

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses'

• Replace {project-id} with a valid id taken from the project list results.

42

CHAPTER 3. INTEGRATIONS

Single analysis details

Single analysis details using its id

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/{analysis-id}'

• Replace {project-id} with a valid id taken from the project list results.

• Replace {analysis-id} with a valid id taken from the analysis list results.

Latest analysis details

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/latest'

• Replace {project-id} with a valid id taken from the project list results.

Files list from an analysis

File list in descending order based on order_by value for given analysis id

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/{analysis-id}/files?page={page}&
→˓page_size={page_size}&order_by={order_by}'

• Replace {project-id} with a valid id taken from the project list results.

• Replace {analysis-id} with a valid id taken from the analysis list results.

• Replace {page} with required page to return. If page parameter is omitted the default value is 1.

• Replace {page_size} with the number of files to return for a page. If page_size parameter is
omitted the default value is 100.

• Replace {order_by} with one of the following values: “lines_of_code”, “change_frequency”,
“number_of_defects”, “code_health” or “cost”. If order_by parameter is omitted the default
value is “change_frequency”.

Files list in descending order based on order_by value for latest analysis

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/latest/files?page={page}&page_
→˓size={page_size}&order_by={order_by}'

• Replace {project-id} with a valid id taken from the project list results.

• Replace {page} with required page to return. If page parameter is omitted the default value is 1.

• Replace {page_size} with the number of files to return for a page. If page_size parameter is
omitted the default value is 100.

• Replace {order_by} with one of the following values: “lines_of_code”, “change_frequency”,
“number_of_defects”, “code_health” or “cost”. If order_by parameter is omitted the default
value is “change_frequency”.

43

CHAPTER 3. INTEGRATIONS

Components list from an analysis

Components list using analysis id

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/{analysis-id}/components'

• Replace {project-id} with a valid id taken from the project list results.

• Replace {analysis-id} with a valid id taken from the analysis list results.

Latest analysis components list

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/latest/components'

• Replace {project-id} with a valid id taken from the project list results.

Single components details from an analysis

Component details using analysis id

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/{analysis-id}/components/
→˓{component-name}'

• Replace {project-id} with a valid id taken from the project list results.

• Replace {analysis-id} with a valid id taken from the analysis list results.

• Replace {component-name} with a valid name taken from the components list results.

Latest analysis component detail

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/latest/components/{component-name}
→˓'

• Replace {project-id} with a valid id taken from the project list results.

• Replace {component-name} with a valid name taken from the components list results.

Component file list from an analysis

Component file list in descending order based on order_by value for given analysis id

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/{analysis-id}/components/
→˓{component-name}/files?page={page}&page_size={page_size}&order_by={order_by}'

• Replace {project-id} with a valid id taken from the project list results.

44

CHAPTER 3. INTEGRATIONS

• Replace {analysis-id} with a valid id taken from the analysis list results.

• Replace {component-name} with a valid id taken from the component list results.

• Replace {page} with required page to return. If page parameter is omitted the default value is 1.

• Replace {page_size} with the number of files to return for a page. If page_size parameter is
omitted the default value is 100.

• Replace {order_by} with one of the following values: “lines_of_code”, “change_frequency”,
“number_of_defects”, “code_health” or “cost”. If order_by parameter is omitted the default
value is “change_frequency”.

Component files list in descending order based on order_by value for latest analysis

curl -X GET --header 'Accept: application/json' -u username:password \
'http://localhost:3003/api/v1/projects/{project-id}/analyses/latest/components/{component-name}
→˓/files?page={page}&page_size={page_size}&order_by={order_by}'

• Replace {project-id} with a valid id taken from the project list results.

• Replace {component-name} with a valid id taken from the component list results.

• Replace {page} with required page to return. If page parameter is omitted the default value is 1.

• Replace {page_size} with the number of files to return for a page. If page_size parameter is
omitted the default value is 100.

• Replace {order_by} with one of the following values: “lines_of_code”, “change_frequency”,
“number_of_defects”, “code_health” or “cost”. If order_by parameter is omitted the default
value is “change_frequency”.

3.3.3 Examples: Use Cases and Scripts

We use CodeScene’s REST API ourselves, and in this section we’d like to share some of the scripts we
use. These scripts are particularly useful on large codebases as a basis for custom reports.

These examples are based on the following strategy: * Invoke the REST API using curl. * Parse the
reply with the jq tool. * Pipe the response to other shell functions when needed.

As such, everything below is built using existing command line tools.

Let’s start by defining a helper function for calling the REST API:

call_api(){ curl -sS -u api:secret http://localhost:3003/api/v1$1; }
export -f call_api

Using the call_api utility, we can now query the REST API for specific purposes as illustrated in the
following paragraphs.

Project Statistics

List project names and ids:

call_api /projects | jq -r '.projects[] | [.name,.id] | @csv' | sort

Calculate the total lines of code in the 10 most changed files:

call_api /projects/1/analyses/latest/files | jq -r '.files | sort_by(.change_frequency)
| .[0:10] | .[].lines_of_code' | paste -sd+ - | bc

45

CHAPTER 3. INTEGRATIONS

Maintenance and Housekeeping

List all local repository paths for all projects (a bit more complex since we call the API in a loop):

call_api /projects | jq -r '.projects[].id' | while read id;do call_api /projects/$id \
| jq -r '.repository_paths_on_disk[]'; done | sort -u

File-Level Analysis Information

List the top hotspot files by change frequency:

call_api /projects/1/analyses/latest/files\?order_by=change_frequency | jq -r '.files[]
| [.change_frequency,.name] | @csv'

Get some metrics for the top 25 hotspot files of a project:

call_api /projects/1/analyses/latest/files\?order_by=change_frequency\&page_size=25 \
| jq -r '.files[] | [.change_frequency,.code_health.health_now,.number_of_defects,.lines_of_
→˓code,.name] | @csv'

Architecture-Level Analysis Information

List a project’s architectural components sort by name:

call_api /projects/1/analyses/latest/components | jq -r '.components | sort_by(.name)| .[] | [.
→˓name, .ref] | @csv'

Get some metrics for the architectural component by name in a project:

call_api /projects/1/analyses/latest/components/`read -p "Enter component name: " name && echo
→˓$name` \

| jq -r '[.age,.change_frequency,.lines_of_code,.system_health.current_score,.name] | @csv'

Get some metrics for all architectural components order by name in a project :

call_api /projects/1/analyses/latest/components | jq -r '.components | sort_by(.name)| .[] | .
→˓name' \

| xargs -I % bash -c "call_api /projects/1/analyses/latest/components/% | jq -r '[.age,.
→˓change_frequency,.lines_of_code,.system_health.current_score,.name] | @csv'"

3.4 Keep Tabs on the State of your Code with Badges

Status badges allow your teams to keep an eye on the health of their projects at a glance. They can be
integrated into any tool that has network access to your CodeScene server. (Access to badges is public.
See Embedding on GitHub (page 47) below.)

The only required information is the project id, which must be inserted in the URLs below.

3.4.1 Types of Badges

CodeScene currently supports badges for the following metrics:

Code Health

The Code Health status badge is available at /{ project id }/status-badges/code-health.

46

CHAPTER 3. INTEGRATIONS

Fig. 3.11: The overall code health of the project.

Missed Goals

The Missed Goals status badge is available at /{ project id }/status-badges/missed-goals.

Fig. 3.12: The status of your project goals.

System Mastery

The System Mastery status badge is available at /{ project id }/status-badges/system-mastery.

Fig. 3.13: Keep track of knowledge loss when developers leave the project.

3.4.2 Configuration

Status badges can be activated on a per-project and per-metric basis in the “Status Badges” configuration
tab.

3.4.3 Embedding

CodeScene’s status badges can be embedded anywhere, as long as a network connection to the CodeScene
server is available. In typical use cases, this would include pages on your organisation’s intranet, such as
hosted Jira, Gitlab or GitHub Enterprise servers.

HTML and Markdown snippets are available on the “Status Badge” configuration page when you select
a badge type. The project id is pre-filled but you will need to supply the URL for your CodeScene server.

3.4.4 Embedding on GitHub

Images on GitHub README pages are served by a proxy <https://help.github.com/en/github/authenticating-
to-github/about-anonymized-image-urls>. The GitHub proxy will not be able to access status badges on
CodeScene. Besides operating your own proxy server to allow public access to the status badges, there
is currently no solution for publishing status badges on GitHub. Instead, however, you can publish a
static badge that can serve as a link back to CodeScene. This will still make it easier for developers on
your team to find the latest CodeScene analysis.

Sample markup is provided on the “Status Badges” configuration tab. The badge image is hosted at
https://www.empear.com/status/analyzed-by-codescene-badge.svg. You can copy the image to your
own public servers if you prefer.

47

https://www.empear.com/status/analyzed-by-codescene-badge.svg

CHAPTER 3. INTEGRATIONS

3.4.5 Security

When they are activated, CodeScene’s status badges are public. Users who are not logged in to CodeScene
will still be able to see be able to see the badges as long as they have network access to the CodeScene
server. This is why badges are opt-in.

Activating a badge does not expose any other data besides the SVG image itself.

48

Chapter 4

Guides

These guides walk you through specific features and aspects of CodeScene Enterprise Edition. They are
divided into Technical, Architectural, and Social guides.

4.1 Dashboards and Reporting

4.1.1 CodeScene’s Dashboards: The Status of Your Codebase at a Glance

CodeScene comes with several dashboards, each one serving a specific use case. In this guide we introduce
the dashboard for an analysis, the inter-product dashboard, as well as the system health dashboard.

The Analysis Dashboard Presents the main KPIs

Each analysis project gets its own dashboard where you see the high level results of each analysis.

Fig. 4.1: CodeScene’s interactive analysis dashboard presents the key metrics at a glance.

The dashboard presents the following information:

49

CHAPTER 4. GUIDES

• File Level Hotspots present the system-wide hotspots on a file level.

• System Level Hotspots present hotspots on an architectural level. The hotspots are sorted according
to the development activity in each component/sub-system/service.

• Alerts: CodeScene auto-detects potential problems and present them here in a prioritized order.
Click on one of the warnings to get more details and act on the findings.

• Key Personnel: Detects key personnel exposure where a significant part of the code is developed
by just a few core developers. Follow-up this finding by investigating the knowledge distribution
in CodeScene.

• Code Health simply shows that trend over the past month and year. A decline in Code Health is
a sign that the switch has to be changed from adding new features towards improving the code in
the top hotspots.

• Interactive Hotspots Map let you explore your whole codebase and identify technical debt as de-
scribed in /guides/usage/index.

• Branch Delivery Risk shows you the predicted delivery risk and, when clicked on, detailed statistics
of active branches. Use this to focus extra testing to where it’s likely to be needed the most.

• Development Costs are calculated based on data from Project Management tools like Jira, Trello,
Azure DevOps, or GitHub Issues.

The Inter-Project Dashboard gives an Overview of all your Codebases

CodeScene also presents an inter-project dashboard that gives you a high-level overview of all your
products, as shown in Fig. 2.8.

Fig. 4.2: The high-level dashboard shows that status of all your products at a glance.

Using these key metrics on the dashboard, in particular the progress on the goals, point you the prod-
ucts/codebase that you need to inspect in more depth.

Finally, note that you can restrict access to certain analysis projects as described in Users and Roles
(page 187).

4.1.2 Custom Reports: Export Detailed Data as CSV Files

CodeScene lets you define custom reports that we export as CSV files – suitable for Excel – or send them
to you via email if you configure an email provider in CodeScene.

50

CHAPTER 4. GUIDES

A custom report can contain any analysis data. You configure a template for the report, and that new,
custom report type is then available in all analysis projects and can also be subscribed to.

CodeScene’s custom reports are available on two levels: file-level and architectural-level.

Using custom reports, you can tailor the information you want to receive. Typical use cases include:

• Hotspot Development Costs: get a detailed break-down of the development costs per file, and
combine it with information like code_health, primary_team, and lines_of_code. This lets you
identify where most development costs are and correlate those costs to any identified technical
debt.

• Knowledge Distribution in your Organization: Select an architectural-level report and add
the fields system_mastery, primary_team, and owner. This lets you identify code ownership on a
team level, as well as the main developer.

• Component and/or Service Delivery Risks: Create an architectural-level report and add the
fields change_frequency, system_health, and last_modification_age_in_months. This combination
lets you identify architectural hotspots with high recent development activity, and look out for a
lower code health which indicates an increased defect risk.

The custom reports are available to any user roles that are allowed to access the social data, e.g. Architect,
Manager.

Create new custom report

Use the Configuration link from the top of the page and then from sub menu choose Custom Reports.
To add a new report click on the Add button:

Specify the reporting level, file or architectural:

51

CHAPTER 4. GUIDES

From here you simply check the type of information that you want to include in the report. As soon as
you press “Save”, your new custom report is available in the same way that the built-in reports are.

Manual request of a custom report

The Custom report can be request from the Report section of any analysis project:

You request any available report from the existing ones:

After requesting a report you will be asked to save or view the report file. The file name is the same as
the name of the requested report.

Scheduled request of a custom report

The Custom report schedule can be set from the project configuration report section.

You need to fill in the email address where the report will be sent (remember to configure the Mail Server
connection using the link from the page), then choose your report type and schedule rule the submit your
changes by clicking on Save Report Configuration button. The report will be generated as scheduled
once there are valid analyses of the specific project.

View custom report file

The report file format is CSV (comma separated values), you can use your favorite text editor to view
the content or you import the report into any spreadsheet application.

Below is an example of import using LibreOffice.

1. Open or save the file.

2. Import report data into spreadsheet

3. View report data as spreadsheet

You can apply any filter or sort your data according to your requirements.

52

CHAPTER 4. GUIDES

53

CHAPTER 4. GUIDES

54

CHAPTER 4. GUIDES

55

CHAPTER 4. GUIDES

4.2 Technical

4.2.1 Hotspots

Hotspots are the workhorse of software analyses and our recommended starting point as you explore
your codebase.

What is a Hotspot?

Most development activity tends to be located in relatively few modules‘. A Hotspot analysis helps you
identify those modules where you spend most of your development time. This is information you use to
improve the parts that really matter. The parts where you’re likely to get a return on investment on
improvements.

Explore the Hotspot Activity

CodeScene lets you explore the overall Hotspot activity in your code. These Hotspots are calculated
from two different data sources:

1. We use the lines of code in each file as a proxy for complexity.

2. We use the change frequency of each file as a proxy for the effort you’ve spent on that code.

You want to look for an overlap between the two metrics. That’s why CodeScene presents an easy to
explore, interactive visualization of your hotspots. Fig. 4.3 shows an example from the Visual Studio
Code codebase.

The Hotspot visualization makes it easy to identify the parts of your code where most development effort
is spent. In a larger codebase you want to let CodeScene identify your refactoring targets. Let’s see how
that’s done.

Focus on your Refactoring Targets

To prioritize your hotspots, CodeScene employs algorithms that look at deeper change patterns in the
analysis data. The rationale is that complicated code that changes often is more of a problem if:

1. The hotspot has to be changed together with several other modules.

2. The hotspot affects many different developers on different teams.

3. The hotspot is likely to be a coordination bottleneck for multiple developers.

This algorithm allows CodeScene to rank and prioritize the hotspots in your codebase as illustrated in
Fig. 4.4.

56

CHAPTER 4. GUIDES

Fig. 4.3: Hotspots in the Visual Studio Code codebase.

Fig. 4.4: CodeScene prioritizes the Hotspots in your code.

57

CHAPTER 4. GUIDES

The red hotspots are the ones you want to focus your attention on; If there is any technical debt or code
quality issues in the red hotspots, then improvements to those parts are likely to give you a real return
on your investment.

Use the hotspot’s biomarker score to get a quick assessment of potential technical debt or maintenance
problems as shown in Fig. 4.5. We talk more about biomarkers in the next section.

Fig. 4.5: CodeScene prioritizes the Hotspots in your code.

Once you’ve addressed those hotspots, the yellow hotspots become interesting as well. A yellow hotspot is
secondary investigative target, albeit not as severe as the red category. Now, let’s explore the biomarkers
calculated for each hotspot.

Shrink the Problem Space with Main Suspects

The ranked hotspots presented as Refactoring Targets are based on probabilities; We cannot guarantee
that the code represents a true problem, but it’s likely to be one. And, best of all, that data is based on
how your developers have worked with the system so far.

Hence, CodeScene includes a virtual code reviewer for any file. The virtual code review will aggregate
the most significant metrics for your chosen file, as seen in Fig. 4.6.

Using CodeScene’s Code Health – How easy is your code to maintain and evolve? (page 64), you’re also
able to get a quick classification on possible maintenance issues:

The main advantage of using hotspots to guide improvements is that you’re able to narrow down refac-
torings to a small part of the system. That in turn will give you more time to tackle larger issues once
you’ve made these initial improvements.

Use Defects to put Costs on Hotspots

When you come across hotspots with severe maintenance issues, there’s always going to be a trade-off:
do we pay-off the worst technical debt or should we continue to shoehorn yet another feature into the
hotspot? Ideally, we would like to know for sure that if we invest, say, two weeks into refactoring the
code, then that effort will pay-off immediately. At the time of writing, there’s unfortunately no way of
looking into the future. What we can do instead is to look at the existing costs and consequences of not
doing any preventive and pro-active code improvements.

For this purpose, CodeScene comes with a Defect Density view. Since most organizations have a known
and estimated number on how much a defect costs, let’s use defects to predict the costs of any sub-optimal
code we might find in our hotspots. Fig. 4.8 shows an example from CodeScene’s dashboard.

58

CHAPTER 4. GUIDES

Fig. 4.6: Get a holistic overview of your hotspot.

Fig. 4.7: View the Code Health trends for your hotspots.

59

CHAPTER 4. GUIDES

Fig. 4.8: CodeScene’s dashboard displays the bug density of the prioritized hotspots.

The statistics on the dashboard tells us the following things about the development costs in our codebase:

• The prioritized hotspots only make up 5.5% of the total codebase, yet

• we spend 17.6% of our development efforts in those hotspots, and

• 23% of all bugs that we detect and fix are in that small part of the code.

Before we move on, let’s point out that 23% is actually on the lower-end; In most codebases, the top
hotspots will be responsible for an even larger percentage of all fixed defects. This has direct implications
on the costs of the whole system.

CodeScene’s Defect Density view shows how distributed our bug fixes are, which lets you correlate defects
with hotspots as shown in Fig. 4.9.

Fig. 4.9: Correlate prioritized hotspots with the distribution of defects in the codebase.

CodeScene also lets you inspect the distribution of those defects over time, as show in Fig. 4.10.

You use this information to detect if the hotspot seems to stabilize in terms of defects or if it’s likely to
be a growing problem.

Specify the Data Source for Defect Statistics

CodeScene needs a data source for its defect mining, and provides two different options depending on
what data you have:

60

CHAPTER 4. GUIDES

Fig. 4.10: The distribution of bug fixes over the past year.

1. Use Jira issues to identify defects: This requires a that you integrate Jira with CodeScene. Code-
Scene will then use all issues identified as defects for its statistics. Specify this option in CodeScene’s
Jira configuration as described in /integrations/integrate-jira.

2. Use commit message patterns to estimate defects: If you have specific tags in your commit messages
that can be used to identify defects, then this is a good option. As a fallback, CodeScene can use
a heuristic that you can override that with

more specific patterns for higher precision, as shown in Fig. 4.11.

Fig. 4.11: Configure a pattern to match defect information in your commit messages.

Dive into your Hotspots

A large codebase may contain many different hotspots. You will also notice clusters of hotspots, which
may indicate that a whole component or package is undergoing heavy changes.

The Hotspots Activity map in CodeScene lets you explore your whole codebase interactively as illustrated
in Fig. 4.12.

61

CHAPTER 4. GUIDES

Fig. 4.12: Hotspots show you the activity in your codebase.

The hotspots map is interactive and hierarchical; Each large blue circle represents a folder in your
codebase. That means you can zoom in and out to the level of detail you’re interested in:

• Click on one of the large, blue circles representing a directory to zoom in on its content.

• Click on a Hotspot to view information about it and to access its context menu to run detailed
analyses.

• Click outside the circle representing a zoomed in folder to zoom out again.

• Hover the mouse over a circle to see information about the module it represents.

The most common interaction is to click on a Hotspot to get more details about it as illustrated in Fig.
4.13.

Use the context menu to access the code for inspection, run CodeScene’s X-Ray (see X-Ray (page 82)),
investigate trends (see Complexity Trends (page 77)) and contributors (see Parallel Development and
Code Fragmentation (page 127)).

CodeScene’s hotspot view also lets you view different aspects of your system, as illustrated in Fig. 4.14.

Just click on an aspect to view its data. For example, Fig. 4.15 shows the distribution of programming
languages used in the implementation of a system.

Use Code Churn as an Alternative Hotspot Metric

Another interesting aspect is Code Churn. By default, CodeScene uses the commit frequency of each file
as the Hotspot criteria; The more changes you’ve done to a file, the higher its change frequency. This
default criteria is supported by several findings from academic research; change alone is the single most
important metric when it comes to quality issues in code. However, there are some rare cases when this
metric becomes biased. One reason is large individual differences in commit style.

Relative Code Churn is an alternative hotspot metric that calculates the amount of change in each file
in terms of Lines of Code. It’s a relative metric since the churn is weighted against the total size of the

62

CHAPTER 4. GUIDES

Fig. 4.13: Click on a Hotspot to access the context menu.

Fig. 4.14: Switch between different aspects in the hotspot view.

Fig. 4.15: The programming language aspect shows the technical sprawl in your codebase.

63

CHAPTER 4. GUIDES

code in each file.

Let’s look at some use cases now that you know how the Hotspots analysis works.

Know how to use Hotspots

A Hotspot Map has several use cases and also serves multiple audiences like developers and testers:

• Developers use hotspots to identify maintenance problems. Complicated code that we have to work
with often is no fun. The hotspots give you information on where those parts are. Use that
information to prioritize re-designs.

• Hotspots points to code review candidates. At Empear we’re big fans of code reviews. Code reviews
are also an expensive and manual process so we want to make sure it’s time well invested. In this
case, use the hotspots map to identify your code review candidates.

• Hotspots are input to exploratory tests. A Hotspot Map is an excellent way for a skilled tester
to identify parts of the codebase that seem unstable with lots of development activity. Use that
information to select your starting points and focus areas for exploratory tests.

Use Hotspots in your Daily Work

How well does Hotspots work in practice? Well, it turns out there’s strong scientific support behind the
metric. The research has often focused on bug predictions, which is relevant since bugs are one of the
main issues behind expensive software maintenance.

The book “Your Code as a Crime Scene” (Tornhill, 2015) dives deeper into those research findings to
explain why and how Hotspots work. But let’s just summarize the conclusions in one line: There’s a
strong correlation between Hotspots, maintenance costs and software defects. Hotspots are an excellent
starting point if you want to find your productivity bottlenecks in code.

That means you want to take your Hotspots seriously. Our recommendation is to run a Hotspot analysis
at least once a week. It’s also a good idea to share your findings with your team. Why not gather
everyone around a Hotspot Map every now and then?

4.2.2 Code Health – How easy is your code to maintain and evolve?

In medicine, a biomarker is a measure that might indicate a particular disease or physiological state of
an organism. CodeScene’s biomarkers does the same for code. Combined with biomarker trends, this
gives you a high level summary on the state of your hotspots and the direction your code is moving in.

The code biomarkers form the basis for CodeScene’s Code Health metric. The Code Health metric
is a score that goes from 10 (healthy code that relatively easy to understand and evolve) down to 1,
which indicates code with severe quality issues. CodeScene’s Code Health metric is transparent and
customizable to adaptable to your coding standards.

Code Health identifies factors known to impact Maintenance costs and Delivery Risks

The Code Health metrics is based on patterns known to correlate with increased maintenance costs.
Patterns that make the code harder to understand and, hence, increase the risk of change and make the
module more expensive to evolve.

The Code Health metric is calculated from a combination of both properties of the code as well as
organizational factors. In total, CodeScene calculates 25-30 code biomarkers depending on programming
language. Examples include – but are not limited to – the following:

• Brain Method: A single function/method that centers too much behavior and becomes a local
hotspot.

64

CHAPTER 4. GUIDES

• Nested Complexity: This is typically revealed as if -statements inside other if -statments and/or
loops, and is a construct that significantly increases the risk for defects.

• Bumpy Road: A bumpy road is a function that fails to encapsulate its responsibilities, leading
to code containing multiple logical chunks of logic. Just like a bumpy road will slow down you
driving, a bumpy road in code presents an obstacle to comprehension. There’s also an increased risk
for feature entanglement. The remedy is often to extract and encapsulate the chunks of logically
dispersed behaviors in their own functions.

• Developer Congestion: Code becomes a coordination bottleneck when multiple developers need
to work on it in parallel (see Parallel Development and Code Fragmentation (page 127)).

• Knowledge Loss due to former contributors: If the developer behind a hotspot with low code
healt leaves the organization, the maintenance risk increases significantly.

• DRY (Don’t Repeat Yourself) Violations: CodeScene detects duplicated logic that is actually
changed together in predictable patterns.

• Primitive Obsession: Code that uses a high degree of built-in, primitives such as integers, strings,
floats, often lacks a domain language that encapsulates the validation and semantics of function
arguments.

The Code Health trends can be automatically supervised in your CI/CD pipeline and/or Pull Requests,
so check out how to enable that integration: Integrate CodeScene in your CI/CD Pipeline (page 30)

Adapt Code Health to your Coding Standards

The global CodeScene configuration lets you adapt the Code Health rules to your coding standard.
CodeScene’s default weighting is calibrated with data from hundreds of codebases, but you can always
override it. For example: if your company prefers long methods or large modules, then re-weight the
corresponding Code Health rules to have less impact.

To do so, go to the global Configuration tab in CodeScene:

Only an Admin can change the rules. If you are not an admin, you can still use the global Configuration
view to get an overview and detailed description of the factors and rules behind Code Health.

The Ideas Behind Code Biomarkers

We at Empear make heavy use of CodeScene ourselves. We use the tool as part of our services. Over the
past years we have analyzed hundreds of different codebases, and there are some patterns that we have
seen repeated over and over again. Thus, we started to implement support in CodeScene to auto-detect
those patterns, and we called the feature biomarkers.

The biomarkers name requires a brief explanation. In general, we wanted to avoid terms like “quality” or
“maintainability” since they are easy to game and, more serious, suggest an absolute truth. Instead we
find that it’s the trend that’s most important: is the code evolving in the desired direction? In addition,
an algorithm, no matter how smart, can only take us so far; at some level we want a human in the loop,
and the code biomarkers are there to support that human by priming them on what to look for in the
specific hotspot. Let’s look at some examples.

Explore your Code’s Biomarkers

If CodeScene has biomarker support for your language (see X-Ray (page 82) for a list of supported
languages), you will get a high-level trend on your dashboard as shown in Fig. 4.17.

The Code Health scores on the dashboard show the (weighted) aggregation of the health of your priori-
tized hotspots. That is, the code that is most likely to drive the costs of new features and improvements.
In this example, we see that a codebase that seems to degrade rapidly, going from a healthy score of 8
down to a low health of 4 in less than a year. That trend is a clear warning sign that the organization
needs to invest more time into refactoring and code improvements.

65

CHAPTER 4. GUIDES

Fig. 4.16: Adapt the Code Health rules to your coding standards.

Fig. 4.17: Code Biomarkers summary on the analysis dashboard.

66

CHAPTER 4. GUIDES

Biomarkers Present Actionable Metrics

Before we move on, how do we know that the biomarkers and scores are relevant? Well, the biomarkers
are built on top of CodeScene’s other metrics and behavioral data. That means we only score the
prioritized parts of the codebase, the one’s that are most likely to impact development and maintenance
costs as show in Fig. 4.18.

Fig. 4.18: Biomarkers are built on top of CodeScene’s prioritized hotspots.

Using this principle, Code Biomarkers fill a number of important gaps:

• Bridge the gap between developers and non-technical stakeholders: The biomarkers visualization
provides information to managers that help decide on when to take a step back, invest in technical
improvements, and measure the effects.

• Get immediate feedback on improvements: The biomarker trends gives you immediate and visual
feedback on the investments you do in refactorings.

• Share an objective picture of your code quality: The biomarker scores are based on baseline data
from throusands of codebases, and your code is scored against an industry average of similar
codebases.

• Get suggestions on where to start refactorings: The code biomarkers hint at specific problems in
each file, which also suggests which refactorings that could be used to address the findings.

Let’s demonstrate those properties by having a more detailed look at biomarkers in
biomarkers-trend-example.

The biomarkers in biomarkers-trend-examplef provide detailed indications for each prioritized
hotspot. We note that the top hotspot, StageBuilder has declined in health over the past months.
We also note the warning sign for DeltaHighlight.java, which has degraded from a full 10 score to a
medium health of 6.

Note that the organization has already planned a set of goals for the hotspots in Fig. 4.17 using Code-
Scene’s Intelligent Notes (see Manage Hotspots and Technical Debt with Goals (page 70)). This is
important as the goal oriented workflow that CodeScene encourages, lets you track and manage tech-
nical debt in the context of your decisions and plans. Make sure to read the tutorial in Hands On
Behavioral Code Analysis: CodeScene Use Cases (page 22) to ensure you get the most out of CodeScene.

Finally, we get more details when we request the virtual code review via the lab bottle next to each
hotspot. Use the virtual code review as an initial step towards refactoring decaying hotspots.

67

CHAPTER 4. GUIDES

Fig. 4.19: Code Health Trends and Biomarkers for a specific project.

Guide Refactorings via the High-Level Patterns Presented in the Virtual Code Reviewer

Often, hotspots with low code health will contain brain methods and be low on cohesion. This is an
indication that the hotspot lacks modularity on both function and class level. The code biomarkers will
detect this and inform you.

Follow up with an X-Ray in order to prioritize local improvements based on how likely those refactoring
are to pay off.

Using X-Ray, we can also investigate the code duplication reported by a biomarker. Duplicated code
usually hints at one–or more–missing abstractions that we could introduce. Hence, we recommend to
run an X-Ray analysis on the file to get more insights now that we know what to look for. We show an
example of a QueryTestBase.cs X-Ray in Fig. 4.20.

Launch the Virtual Code Reviewer to Get a Holistic View of Hotspots

You can launch a virtual code reviewer for any file. The virtual code review will aggregate the most
significant metrics for your chosen file, as seen in Fig. 4.6.

The virtual code reviewer combines the social and technical analysis data you need to assess the severity
of the biomarker findings:

• Review the detailed biomarker indications to spot maintenance and quality issues.

• Detect potential inter-team coordination bottlenecks that should drive refactorings through the
social metrics such as the team autonomy measure.

• See if it’s a growing problem in the Complexity Trend.

• Investigate the change coupling, filtered for your selected file under review.

• Use the defect trend to estimate the cost of any technical or social debt you might find in the
review.

68

CHAPTER 4. GUIDES

Fig. 4.20: Use X-Ray to follow-up on the biomarkers.

Fig. 4.21: Get a holistic overview of your hotspot.

69

CHAPTER 4. GUIDES

Augment Hotspots to let CodeScene Supervise them

Once you have inspected a hotspot you can augmented the analysis with your observations. An aug-
mented analysis lets you categorize your findings so that CodeScene can supervise and guide you based
on the technical debt you identify. This augmented analysis provides a complete framework for managing
technical debt and is described in detail in Manage Hotspots and Technical Debt with Goals (page 70)

Fig. 4.22: Add a goal to any hotspot in the Code Health view.

Auto-Detect Declining Code Health with Continuous Integration

CodeScene’s delta analysis lets you supervise your code health as part of a continuous integration pipeline.
This lets you auto-detect files that seem to degrade in quality through issues introduced in the current
commit or pull request. See Use a Delta Analysis to Save Time in Code Reviews (page 142) for more
details.

4.2.3 Manage Hotspots and Technical Debt with Goals

CodeScene lets you add contextual information to the analysis data as specific _goals_. In combination
with the hotspot analyses, CodeScene’s goal-oriented workflow serves as a framework for managing
technical debt and code quality issues, from detection to action.

Specify Contextual Information

Context matters:

• What features do you plan to implement next and what parts of the system will they affect? If
you know a particular module requires an extension, you might want to start by a set of pro-active
refactorings to make the new feature cheaper and less risky to implement.

• There’s always a trade-off between adding new features versus improving existing code. So how
much can you spend on re-work and improvements?

• Finally, there’s a decision to be made on when is a piece of code is good enough.

70

CHAPTER 4. GUIDES

By planning a goal, you specify such contextual information which is then processed as part of the
analysis. This means that the analyses are aware of your goals and can measure the progress towards
them. Let’s get started with an example.

Plan a Goal for a Hotspot

CodeScene supports the following goals and categorizations of code:

1. Planned Refactoring: Choose this category when you have investigated the code, perhaps with
CodeScene’s virtual code reviewer or its X-Ray analysis and see the need to pay-off some technical
debt in the short term.

2. Supervise: Choose this category for code that might be acceptable for now, but that shouldn’t
grow worse. Supervise lets you put a quality bar on existing code, which is particularly useful in
legacy codebases.

3. No Problem: Choose this category to let CodeScene know that you don’t consider the code a
problem. Perhaps you plan a replacement of the hotspot code, or you consider the report a false
positive.

4. Critical Code: Categorize a module as Critical Code to have it tracked in a separate view and
included in the PDF reports. Typical use cases involve tracking code that’s business critical or has
security impact.

You can specify the goals and categories in the Code Health view. Goals can also be specified on any
file via the virtual code reviewer in CodeScene.

Once a goal has been added, CodeScene will start to track it in every sub-sequent analysis. How
CodeScene tracks a file dpends on the category you have assigned. Let’s look at the differences between
the categories in the next sections.

Analysis Of Planned Refactorings

When you specify a Planned Refactoring goal, CodeScene will do the following, depending on how the
code evolves over time:

71

CHAPTER 4. GUIDES

• Code Degrades: This will trigger a warning on the analysis dashboard since it violates the refac-
toring goal.

• Code Improves: This gives you a thumbs-up as the goal was met and the code is now in measureably
better state.

• No Change: CodeScene understands that complex refactorings take time. However, if there’s no
clear improvement over the next months, CodeScene will warn you about it. Perhaps you want to
re-consider your goal or prioritize the refactoring?

Analysis Of Supervised Hotspots

Like we discussed earlier, you might chose a different trade-off and wait before undertaking a larger
refactoring. Perhaps you know that the code in question is feature complete, or maybe you conclude
that the code is acceptable after all. In that case you want to ensure that it stays that way.

With hotspot supervision, you ensure that no new technical debt is taken on without you getting an
alert from CodeScene.

Analysis Of Code Marked As “No Problem”

False positives show up every now and then in all automated code analyses and CodeScene is no exception
even though we do our best to filter them out. For example, there might be this gigantic hotspot file
that is worked on all the time but just contains common declarations like enumerations or constants.
While that might not be an award-winning design, such code is usually not a primary driver of excess
development costs. Or maybe you do identify a problematic hotspot but know – again: contextual
information – that this code will be replaced by a new library next month.

In that case you can make the decision to ask CodeScene to ignore a specific hotspot, and it won’t show
up as prioritized technical debt in your next analysis.

However, there’s always a danger of suppressing warning signs or problems. Hence, CodeScene keeps
analyzing ignored hotspots in the background even if you explicitly marked them as No Problem. Should
something dramatic happen to that code, CodeScene will point your attention to it by issuing a warning
on the project’s dashboard so that you can re-consider the goals for that hotspot.

Analysis Of Code Marked As “Critical”

All files marked as “critical code” are listed in a dedicated view where you can inspect their evolution.

During an analysis, critical code acts like the “Supervise” goal. That is, any code health decline leads
to a failed goal and is reported as such.

Manage Your Goals From The Dashboard

Most of the time you will interact with the goals via the virtual code reviewer or the Code Health view.
But you can also get an overview of all goals and administrate them on a separate dashboard as shown
in Fig. 4.23.

The dashboard is particularly interesting for the hotspots classified as No Problem as they won’t show
up in the other analyses unless CodeScene found a growing problem in them.

Know The Edge Cases When Tracking Hotspots

CodeScene does its best to track the goals you have attached to hotspots even if you move or rename the
hotspot files. However, in some situations this isn’t possible. The reasons are due to the way Git works.

72

CHAPTER 4. GUIDES

Fig. 4.23: Manage the goals on their dashboard.

When CodeScene cannot find the file referenced by a goal, that goal appears in the list of “Lost Notes”
in the Hotspot Goals Dashboard.

The interface for lost goals lets you to decide what to do:

• A file has been removed from the project. If this is the case, it’s time to remove the note as well.
Just click on the Pen icon and select “Delete”.

• A file (or an ancestor directory) has been renamed or moved. You should create a new note through
the usual procedure, then delete the lost note.

The following situations are known to cause a lost goal:

• Deleted content: The most common reason for a lost goal is that the original hotspot has been
deleted.

• Two-step renaming of content: Normal file renames work fine, but if the deletion step and the adding
of the new file are performed in separate commits then CodeScene won’t be able to maintain the
link from note to content.

4.2.4 Change Coupling: Visualize Logical Dependencies

Change Coupling means that two (or more) modules change together over time. Exploring the change
coupling in our codebases often gives us deep and unexpected insights into how well our designs stand
the test of time.

Change coupling is also used to evaluate how well a software architecture aligns with the organizational
structure of the teams that build the system.

Note that change coupling is an advanced analysis. As such, it’s usage frequency is lower than the
hotspots and technical debt analyses. We find that a change coupling analysis provides valuable feedback
in a team retrospective or as weekly architectural feedback.

Understand Change Coupling

CodeScene provides several different metrics for change coupling. The tool considers two modules coupled
in time:

• if they are modified in the same commit, or

73

CHAPTER 4. GUIDES

• if they are modified by the same programmer within a specific period of time, or

• if they refer to the same Ticket ID in their commit messages.

Change coupling in itself is neither good nor bad; it all depends on what modules that are coupled and
for what reason they co-evolve. Hence, we recommend using change coupling to visualize the actual,
logical dependencies in your codebase and compared this information to your architectural principles.
Any deviations might indicate real problems.

Visualize System Aspects using Change Coupling

By default, CodeScene shows a hierarchical view of your change coupling. Hover over a label in the
graph to highlight its dependants as illustrated in Fig. 4.24.

Fig. 4.24: Hover over a file in the change coupling graph to see its dependants.

The different colors of the connecting lines illustrates the temporal dimension of the dependency: does
it grow stronger (red), decreases (blue), or remains stable (yellow)? This trend information lets you
follow-up on the effect of architectural changes.

CodeScene also lets you capture logical system dependencies that cross team-boundaries:

The preceding figure shows you how to uncover inter-service dependencies in a microservice architecture.
The same analysis works equally well to visualize the change impact in a monolithic codebase, of
course.

74

CHAPTER 4. GUIDES

Fig. 4.25: Visualizing change coupling across microservices (example from Spinnaker).

75

CHAPTER 4. GUIDES

Investigate Logical Dependencies across Architectural Boundaries

The cool thing with CodeScene’s change coupling is that it works across Git repository boundaries.
The Spinnaker example above illustrates that: each microservice – indicated by the different colors – is
located in its own Git repository.

Now, let’s say that those inter-connected services are potentially developed and owned by different
development teams. If that’s the case, the coordination costs in the organization might soar as new
features and bug fixes require work by multiple teams before they can be completed.

CodeScene provides a second overlay that lets you visualize the team aspect of change coupling:

Fig. 4.26: Visualizing logical dependencies across team boundaries (example from Spinnaker).

This visualization presents the same codebase as above, only now it’s grouped based on the main con-
tributing team in each service.

Advanced Analyses: X-Ray your Logical Dependencies

When you find an unexpected dependency, you often have to dig into the code and understand why. This
is where CodeScene’s X-Ray feature proves invaluable as it lets you X-Ray a change coupling clusters.
Check out the guide in :doc:‘/guides/technical/xray‘for more details and examples.

76

CHAPTER 4. GUIDES

4.2.5 Complexity Trends

Complexity Trends are used to get more information around our Hotspots.

Once we’ve identified a number of Hotspots, we need to understand how they evolve: are they Hotspots
because they get more and more complicated over time? or is it more a question of minor changes to a
stable code structure? Complexity Trends help you answer these questions.

Complexity Trends are calculated from the Evolution of a Hotspot

A Complexity Trend is calculated by fetching each historic version of a Hotspot and calculating the code
complexity of those historic versions. The algorithm allows us to plot a trend over time as illustrated in
Fig. 4.27.

Fig. 4.27: A complexity trend sample.

The picture above shows the complexity trend of single hotspot, starting in mid 2015 and showing its
evolution over the next year. It paints a worrisome picture since the complexity has started to grow
rapidly.

Worse, as evidenced by the Complexity/Lines of Code ratio shown in Fig. 4.28, the complexity grows
non-linearly to the amount of new code, which indicates that the code in the hotspot is getting harder and
harder to understand. You also see that the accumulation of complexity isn’t followed by any increase
in descriptive comments. So if you ever needed ammunition to motivate a refactoring, well, it doesn’t
get more evident than cases like this. This file looks more and more like a true maintenance problem.

We’ll soon explain how we measure complexity. But let’s cover the most important aspect of Complexity
Trends first. Let’s understand the kind of patterns we can expect.

Know your Complexity Trend Patterns

When interpreting complexity trends, the absolute numbers are the least interesting part. You want to
focus on the overall shape and pattern first. Fig. 4.29 illustrates the shapes you’re most likely to find in
a codebase.

Let’s have a more detailed look at what the three typical patterns you see above actually mean.

77

CHAPTER 4. GUIDES

Fig. 4.28: The ration between complexity and lines of code accumulation.

Fig. 4.29: Complexity trend patterns you might find in a codebase.

78

CHAPTER 4. GUIDES

The Pattern for Deteriorating Code

The pattern to the left, Deteriorating Code, is a sign that the Hotspot needs refactoring. The code has
kept accumulating complexity. Code does that in either (or both) of the following ways:

1. Code Accumulates Responsibilities: A common case is that new features and requirements are
squeezed into an existing class or module. Over time, the unit’s cohesion drops significantly. The
consequence of that for our ability to maintain the code is severe: we will now have to change the
same unit of code for many different reasons. Not only does it put us at risk for unexpected feature
interactions and defects, but it’s also harder to re-use the code and to modify it due to the excess
cognitive load we face in a module with more or less related functionality.

2. Constant Modification to a Stable Structure: Another common reason that code becomes a hotspot
is because of a low-quality implementation. We constantly have to re-visit the code, add an if-
statement to fix some corner case and perhaps introduce that missing else-branch. Soon, the code
becomes a maintenance nightmare of mythical proportions (you know, the kind of code you use to
scare new recruits).

Complexity Trends let you detect these two potential problems early. Once you’ve found them, you need
to refactor the code. And Complexity Trends are useful to track your improvements too. Let’s see how.

Track Improvements with Complexity Trends

Have one more look at the picture above. Do you see the second pattern, “Refactoring”? A downward
slope in a complexity trend is a good sign. It either means that your code is getting simpler (perhaps
as those nasty if-else-chains get refactored into a polymorphic solution) or that there’s less code because
you extract unrelated parts into other modules.

Now, please pat yourself on the back if you have the Refactoring trend in your hotspots - it’s great! But
do keep exploring the complexity trends. What often happens is that we spend an awful amount of time
and money on improving something, fail to address the root cause, and soon the complexity slips back
in. Fig. 4.30 illustrates one such scary case.

Fig. 4.30: Example on failed refactoring.

79

CHAPTER 4. GUIDES

You might think this a special case. But let me assure you - during the work on these analysis techniques
we analysed hundred of codebases and we found this pattern more often than not. So please, make it a
habit to supervise your complexity trend; CodeScene will even do it automatically for you, as illustrated
in Fig. 4.31. Those complexity trend warnings are triggered when the code complexity in any part of
your code starts to grow at a rapid rate.

Fig. 4.31: CodeScene supervises your complexity trends.

Diff your Complexity Trends

CodeScene provides an automated diff between the sample points in a complexity trend. A diff is a useful
investigative tool when you look to explain why a trend suddenly increased or dropped in complexity.

You run a diff by clicking on one of the sample points in the complexity trend, as shown in Fig. 4.32.

Fig. 4.32: Diff a complexity trend by clicking on a sample point.

80

CHAPTER 4. GUIDES

The diff is done between the sample points in the complexity trend graph, which might include several
commits. Hence, the diff view includes the history between those samples points as shown in Fig. 4.33.

Fig. 4.33: The complexity trend diff includes the history between the samples points.

Limitation: Please note that in the current version, CodeScene won’t be able to diff files that have
been renamed or moved. This functionality is likely to be added in a future version.

What’s “Complexity” anyway?

All right, we said that Complexity Trends calculate the complexity of historic versions of our Hotspots.
So what kind of metric do we use for complexity?

The software industry has several well-known metric. You might have heard about Cyclomatic Com-
plexity or Halstead’s volume measurement. These are just two examples. What all complexity metrics
have in common, however, are that they are pretty bad at predicting complexity!

So we’ll use a less known metric, but one that has been shown to correlate well with the more popular
metrics. We’ll use indentation-based complexity as illustrated in Fig. 4.34

Virtually all programming languages use whitespace as indentation to improve readability. In fact, if
you look at some code, any code, you’ll see that there’s a strong correlation between your indentations
and the code’s branches and loops. Our indentation-based metric calculates the number of indentations
(tabs are translated to spaces) with comments and blank lines stripped away.

Indentation-based complexity gives us a number of advantages:

• It’s language-neutral, which means you get the same metric for Java, JavaScript, C++, Clojure,
etc. This is important in today’s polyglot codebases.

• It’s fast to calculate, which means you don’t have to wait half a day to get your analysis results.

81

CHAPTER 4. GUIDES

Fig. 4.34: Explaining whitespace complexity.

Know the Limitations of Indentation-Based Complexity

Of course, there’s no such thing as a perfect complexity metric. Indentation-based complexity has a
number of pitfalls and possible biases. Let’s discuss them so that you can keep an eye at them as you
interpret the trends in your own code:

• Sensitive to layout changes: If you change your indentation style midway through a project, you
run the risk of getting biased results. In that case you need to know at what date you made that
change and use that when interpreting the results.

• Sensitive to individual differences in style: Let’s face it - you want a consistent style within the
same module. Inconsistent indentation styles makes it harder to manually scan the code. So please
settle on a shared style.

• Does not understand complex language constructs: There are certain language constructs that
indentation-based complexity will treat as simple although the opposite may hold true. Examples
include list compressions and their relatives like the stream API in Java 8 or LINQ in .NET. On
the other hand, it’s common to add line breaks and indent those constructs as well.

All right, we’re through this guide on Complexity Trends and you’re ready to explore the patterns in
your own codebase. Just remember that, like all models of complex processes, Complexity Trends are an
heuristic - not an absolute truth. They still need your expertise and knowledge of the codebase’s context
to interpret them.

4.2.6 X-Ray

X-Ray gives you Deep Insights into your Code

Hotspots are code that we have to work with frequently. We know that any improvements we do to a
hotspot are likely to pay-off immediately. However, sometimes those improvements aren’t straightfor-
ward; Some of the worst hotspots we’ve seen are files with several thousands lines of code. Given that
amount of code, where do we start? Are all parts of that file equally important? Are there any functions
or methods that contribute more to the code being a hotspot than others? CodeScene’s X-Ray feature
answers these questions.

82

CHAPTER 4. GUIDES

X-Ray is a language-dependent analysis. The supported programming languages are listed in the
/usage/language-support section.

An Overview of X-Ray

X-Ray is an analysis that operates on the function/method level of your code. Thus, X-Ray is able to
provide deep and detailed information on what’s happening inside a Hotspot.

There are three main use cases for the X-Ray functionality:

1. X-Ray lets you make sense of large files and get specific recommendations on the parts to improve.

2. X-Ray provides detailed information on why a cluster of files are temporally coupled.

3. X-Ray recommends re-structuring opportunities on the methods in your Hotspots in order to make
the code easier to understand and maintain.

In the following guide we’ll cover all of these cases. Let’s start with how you can make sense of large
files.

X-Ray calculates Hotspots on a Method Level

A Hotspot analysis is orthogonal to the data it operates on. That is, CodeScene presents hotspots as
individual files, but also on an architectural level as entire components and sub-systems. With X-Ray,
we climb down the abstraction ladder and run a Hotspot analysis on a method level.

A large file is like a system in itself. Some parts remain stable, while other parts of the file keeping
changing as new features are added and bugs get resolved. With X-Ray, you’ll get a prioritized list of the
methods you want to refactor and improve first. This is important since re-designing a large module is
both high-risk and expensive. So instead you want to take an iterative approach to your improvements
and base those improvements on data.

To run X-Ray, go to your Hotspot map, click on the Hotspot and select ‘X-Ray’ from the context menu
as shown in Fig. 4.35.

Fig. 4.35: Run X-Ray from the context menu.

X-Ray is run on demand. That is, the first time you execute it on a Hotspot it may take a few seconds
to get the results. Sub-sequent accesses are cheap since we cache the results.

83

CHAPTER 4. GUIDES

Once you get the results you’ll see that you typically spend more time on some methods than others.
So let’s walk through the X-Ray results and look at the individual pieces. Have a look Fig. 4.36 as a
starting-point.

Fig. 4.36: The starting point in an X-Ray analysis.

Fig. 4.36 shows the results of an X-Ray analysis. We see that our hotspot is a method named CreateIn-
voker, which consists of 193 lines of code. You also see that CreateInvoker has a Cyclomatic Complexity
of 22, which is a fairly high number. Thus, the method represents complicated code that you also have
to work with often.

Methods like this are exactly where you’d like to focus your refactoring efforts; The high change frequency
of the method indicates that improvements are likely to pay-off immediately. And the lines of code and
complexity numbers gives you a sense of the effort you need to invest to make the necessary improvements.

But X-Ray gives you more information. As you see in the table above, CodeScene also lets you run a
Complexity Trend analysis of an individual method:

Interpret Cyclomatic Complexity in Context of Relevance

The cyclomatic complexity measure included in X-Ray shouldn’t stand on its own. Just because some
code is complex doesn’t mean it’s a problem. However, when we combine a complexity measure with
change frequencies – like X-Ray does – we get information we can act upon since the code complexity is
put into context and ranked based on relevance.

CodeScene includes its cyclomatic complexity metric as a supplement to the other information as a
decent approximation of, well, complexity. As a rule of thumb, any cyclomatic complexity value above
10 is likely to be problematic. A cyclomatic complexity beyond 25 is likely to hint at a true maintenance
nightmare. But again, use the complexity value as a guide, not as an absolute truth.

Cyclomatic complexity also helps you make refactoring decisions in the sense that you get a rough idea
on how hard the code will be to test. Each branch in your functions add to their complexity value and,
as a direct consequence, to the testing efforts.

Break Down Defects to the Method Level

In addition to the complexity metrics, CodeScene’s X-Ray lets you break down defect statistics to
individual functions. The purpose of this analysis is to further inform refactoring and rework decisions;

84

CHAPTER 4. GUIDES

Fig. 4.37: CodeScene presents complexity trends on a function level.

maybe it’s easier to communicate the need for a larger refactoring effort if you can show that 30% of all
bug fixes are in a single hotspot method?

Fig. 4.38: CodeScene breaks down defect statistics from a hotspot file to a function level.

Calculating defects in the X-Ray analysis requires an integration with a project management tool as
described in Integrate Costs and Issues into CodeScene (Jira, Trello, Azure DevOps and GitHub Issues)
(page 32).

A Note on Overloaded Methods

Some languages like C++, C#, and Java let you use the same function name for different implementa-
tions. CodeScene lets you configure how to analyse overloads. There are two options:

85

CHAPTER 4. GUIDES

1. Analyse overloaded methods separately: each overloaded method is treated as a separate unit of
analysis in the X-Ray.

2. Combine overloaded methods: This is the default behavior, and CodeScene presents the statistics
for all of the overloads as one, single entry.

You configure your choice in each analysis project (Hotspot section).

In case #2, X-Ray will combine all overloads with the same name into a single unit of measure. That is,
if you have functions with the signature f(int) and f(string) they will be combined in the analysis. This
approach typically gives you better results since the overloaded functions are part of the same logical
unit of design and you want to analyze them as such.

CodeScene includes a count on the total number of methods to highlight such overloads, as shown in
Fig. 4.39.

Fig. 4.39: X-Ray highlights the total number of methods behind each overloaded hotspot.

X-Ray calculates Temporal Coupling between Methods

As you X-Ray a Hotspot, CodeScene also looks for temporal coupling between individual methods in
that file. This is information that helps you identify unexpected change patterns. Let’s look the example
in Fig. 4.40.

Fig. 4.40: X-Ray calculates temporal coupling between the methods in your Hotspot.

Fig. 4.40 shows that two methods, CreateInvoker and Invoke_UsesDefaultValuesIfNotBound changes
together in 60% of all changes. That is, every second time you change one of these methods there’s a
predictable change to the other one.

You use the Temporal Coupling results as input to your refactoring efforts. For example, in the example
above, you probably want to have a close look at both methods to see why they are so strongly coupled
in time. Often, there’s either a leaky abstraction or a fair chunk of duplicated logic in either part of the
code.

86

CHAPTER 4. GUIDES

X-Ray lets you look into Temporal Coupling Clusters

Temporal Coupling is one of the most powerful software analyses in our arsenal. A temporal coupling
analysis often highlights unexpected change patterns in our codebase and provides us with important
information that we cannot deduce from the code alone. However, temporal coupling has also been one
of the hardest results to act upon.

Think about it for a minute. Let’s say that you investigate some temporal coupling results and identify a
cluster of 10 files that tend to change together. Now, how do you uncover the reason for this coupling in
time? Well, in more complex cases you need to compare the code and walk through the historic revisions
to know which parts of the files that are responsible for the coupling. This can be painful, particularly
for large files that are low on cohesion. Enter X-Ray for temporal coupling.

With X-Ray, all of these steps are completely automated. You just click on a file in the temporal coupling
visualization and select ‘X-Ray’ from the context menu as illustrated in Fig. 4.41.

Fig. 4.41: X-Ray lets you investigate temporal coupling clusters in detail.

Once X-Ray is done, you’re presented with a dependency wheel on method level. Have a look the
dependency wheel in Fig. 4.42 and I’ll walk you though the details.

The dependency wheel in Fig. 4.42 is an interactive visualization. As you see in the example above,
when we hover over the part that represents the method RendersLinkTagsForGlobbedHrefResults, we see
that the method is coupled in time to six other methods located in a different class. This information is
powerful: now we’ve limited the amount of code you need to inspect in order to improve the design and
break this expensive change pattern.

Find change patterns across repository boundaries

Since CodeScene’s analyses are language neutral it can identify implicit/hidden change patterns between
code implemented in different languages. But CodeScene can go an extra mile: it can even uncover
such change patterns when the different files are located in separate Git repositories! Take a look at the
X-Ray results in Fig. 4.43.

As you see in the preceding figure, X-Ray works across Git repository boundaries to identify the functions
responsible for the temporal coupling. This is a powerful analysis that is particularly useful to:

• Microservices: Implicit dependencies across service boundaries is problematic since it couples the
life cycle of different services to each other. Use CodeScene to detect and X-Ray such dependencies.

• Producer/Consumer : The preceding example is a modern variation of the client-server pattern.
Use X-Ray to learn about the change pattern in a complex, multi-repository project.

87

CHAPTER 4. GUIDES

Fig. 4.42: The dependency wheel shows the temporal coupling between methods.

88

CHAPTER 4. GUIDES

Fig. 4.43: X-Ray works across multiple repositories.

• Inter-Team Coordination: In large organizations different teams tend to be responsible for the
code in different repositories. Using X-Ray’s inter-repo analysis lets you uncover expensive change
patterns that impact other teams.

Unfortunately X-Ray across repository boundaries doesn’t work by magic; There has to be some mech-
anism to relate different commits to the same logical change set. CodeScene use Ticket IDs for that
purpose, so all you need to do is to configure your Ticket ID patterns and this X-Ray feature will become
enabled.

As a bonus, this feature also works well in the case of differing commit styles; Some organizations prefer
to build their features by many small and incomplete commits. As a consequence, a single commit
contains very little information and there’s usually no temporal coupling between commits. Temporal
coupling by Ticket ID provides a viable alternative here.

X-Ray detects Software Clones

Temporal coupling arises for several reasons. It’s also important to note that all coupling isn’t bad. For
example, you’d expect a unit test to change together with the code under test. However, in the case
where you can’t think about any good reason two pieces of code keep changing at the same time you’ll
inevitably find a refactoring opportunity.

One of the most common reasons for unexpected temporal coupling is a dear old friend: copy-paste. In
fact, copy-paste is so common that we’ve included an analysis of code similarity in X-Ray.

You get to the code similarity analysis by clicking at the result tab for External Temporal Coupling
Details as illustrated in Fig. 4.44.

In Fig. 4.44 you see that there are two methods with the same name, but located in different classes, that
have a code similarity of 98%. You want to use this data as a starting point. If you could encapsulate
that shared logic in a separate method that you re-use between the two classes your temporal coupling
will go away. Your application will become a little bit easier to maintain.

89

CHAPTER 4. GUIDES

Fig. 4.44: The Code Similarity analysis let you uncover copy-paste code.

A word on Software Clone Detection

Copy-paste detection isn’t exactly a new technique. However, it’s still far from mainstream in the software
industry. One reason that copy-paste detectors haven’t caught on is because they fail to prioritize their
findings in a sensible way.

If you look at studies of large codebases, you’ll learn that around 5-20% of all large codebases represents
duplicated logic to some degree. That’s quite a lot. There’s simply no way you can start to refactor
that amount of code and hope to get a return on that investment. In fact, most of that duplicated code
doesn’t matter. So how can we find the software clones that limit out ability to maintain the system?

CodeScene’s X-Ray solves this dilemma. By combining copy-paste detection with temporal coupling we
know that the identified software clones matter. For example, if you look at the example above, you’ll
see that the two methods with a code similarity of 98% are changed together in one third of all cases.
That is, with X-Ray you’ll find the software clones that actually matter. This lets you prioritize the
improvements that you do while still ensuring that you get a real return on those refactoring investments.

Follow the Restructuring Recommendations

Empear’s CodeScene is the first ever software analysis tool that implements a proximity analysis. The
X-Ray findings present the proximity results as a set of recommendations on how to re-structure the
methods in a Hotspot in order to make the code more readable. Let’s start by understanding the concept
of proximity and why it matters to our ability to maintain code.

The proximity principle focuses on how well organized your code is with respect to readability and
change. You use proximity both as a design principle and as a heuristic to evaluate the cohesion and
structure of existing code.

The principle of proximity is a concept from Gestalt psychology. The Gestalt movement pioneered
principles on how we make sense of all chaotic input from our sensory systems. We need to understand
the Gestalt principles if we want to optimize our code for readability. Remember, we use the same brain
to interpret code as we use to make sense of the physical world.

Within Gestalt psychology, the principle of proximity specifies that objects or shapes that are close to
one another appear to form groups as illustrated in Fig. 4.45. If we translate this to software, it means
that readable code is structured in a way that lets our brain understand parts of the source code file as
a whole. The main reason is because we want our code to support our change patterns: code that is
expected to be changed together should be close. Such a code structure serves as a powerful reminder
to both the programmer and, more important, the code reader that a set of functions belong together.

CodeScene measures proximity based on your change patterns (aka internal temporal coupling). You see
an example on a proximity analysis in Fig. 4.46 from the implementation of the Clojure programming
language.

The highlighted recommendation in Fig. 4.46 shows two functions, hash-map and array-map, that are
frequently changed together. That is, they are temporally coupled. However, if you look at the imple-

90

CHAPTER 4. GUIDES

Fig. 4.45: An illustration of the Principle of Proximity where our brain forms groups of related objects.

Fig. 4.46: The Proximity Analysis recommends re-structuring of the methods in a Hotspot.

91

CHAPTER 4. GUIDES

mentation in the Clojure project you’ll see that there are thousands of lines of code between hash-map
and array-map. This is bad news for a maintenance programmer because it’s so easy to miss an update to
one of the functions. A simple, low-risk refactoring is to just move those two functions next to each other.
That simple change lets the code signal that the functions belong together. In addition it dramatically
increases the chances that a bug fix to one of the functions is applied to the other function too.

So what metric do we use for proximity? If you look at Fig. 4.46 you see that there’s a Total Proximity
column in the analysis results. The proximity values specify the distance between the related functions.
The unit of measure is the number of intermediate functions between the related parts. In our example
with hash-map and array-map Fig. 4.46 shows that there’s a total proximity of 299. That means that
there are 299 (!) functions separating the implementation of hash-map from its related temporally
coupled array-map.

Know the limitations of Method-level analyses

CodeScene tracks renamed content. That is, if you move or rename a file, we make sure to fetch its past
history even if you’ve renamed the file multiple times. We implement a similar mechanism for X-Ray
too. X-Ray will track and analyze the history of renamed methods/functions. . . except when it won’t.
Let’s elaborate on that so that you know the possible corner cases.

First of all we have a philosophical question here. Let’s say you decide to refactor parts of your code.
You simplify some parts of it and rename a few functions. Now, when is a function renamed and when
is it actually a new function that replaces an old one? This distinction isn’t clear.

X-Ray resolves this dilemma by introducing a set of heuristics for its rename detection. In general,
X-Ray tries to do the most sensible thing while avoiding false positives in the analysis results.

Increase the Depth of the Analysis

By default, X-Ray will look at a maximum of 200 revisions. In most codebases that’s more than enough.
So why put a limit on it? Well, there are projects that have been around for a long time and their top
Hotspots may well have over thousands of commits. To X-Ray that data will take quite some time. In
addition, the most interesting patterns are likely to be in the recent evolution of the Hotspot.

Most of the time this is the behavior that you want. However, in case you want to dive deeper and
X-Ray the complete evolution of a Hotspot you need to instruct CodeScene to do that. This choice is a
simple matter of configuration as illustrated in Fig. 4.47.

Fig. 4.47: The project configuration lets you X-Ray all revisions of a Hotspot.

4.2.7 Development Output and Code Churn

CodeScene’s development output metrics indicates the rate at which your code evolves. Some common
use cases include:

92

CHAPTER 4. GUIDES

• Visualize your development process: Your code churn signature in the diagrams below mirrors the
practices you use to deliver code. You may want to watch out for regular spikes, which may hint
at a mini waterfall going on in your daily work

• Reason about delivery risks: Code churn is a good predictor of post-release defects. Thus, it’s a
warning sign if you approach a deadline while your code churn increases. That’s a sign that the
code gets more and more volatile the closer you get to your deadline. You want the opposite. You
want to stabilize more and more code the closer you get to delivery.

• Track trends by task: CodeScene lets you inspect the size and impact of your tasks. Use the
information to see if your project management tasks are on an appropriate level or if each one of
them implies a mini big bang in terms of code changes.

CodeScene provides several churn measures. They’re all described in this guide and you typically inves-
tigate all of them to get the overall trend in your codebase.

Use the Commit Activity as the Pulse of your Codebase

The commit activity chart shows the number of commits and contributing authors over time as illustrated
in Fig. 4.48.

Fig. 4.48: The commit activity chart.

The number of commits and authors over time is a different kind of churn. This metric will typically
correlate well with your other Code Churn metrics described below. However, you want to look out for
potential productivity issues like an increase in authors without a corresponding increase in commits
and churn; Such a trend often indicates that you’ve more programmers contributing than the software
architecture (and/or organization) can support.

Correlate Trends in the Number of Contributors with the Churn Metrics

The Active Contributors trend shows the number of authors in the codebase over time. CodeScene
calculates this information by looking at the first and last recorded contribution times for each author.
This lets you view a trend as illustrated in Fig. 4.49.

The contribution trend is particularly interesting when correlated with the other churn trends. You
may also want to compare the contribution trend with the system complexity trend (see Architectural
Analyses (page 100)). Correlating the number of active contributors to these churn metrics lets you
evaluate the effect (or lack thereof) when a project is scaled up or down.

93

CHAPTER 4. GUIDES

Fig. 4.49: The number of active contributors over time.

Uncover Long-term Trends in your Code Churn Rolling Average

CodeScene measures two separate churn metrics: the number of added lines of code, and the number of
deleted lines. The values in the graph shows the rolling average of your code churn (rolling average is a
technique to smooth out sudden fluctuations in your data). You configure a time window for the rolling
average in your project configuration.

The main use of these code churn metrics is to reason about delivery risks; If you’re close to a deadline
and have a rising churn, you might want to understand why. After all, an increase in churn means that
the codebase has become more and more volatile. Unless you have an extensive safety net in terms of
tests and continuous deployment techniques, you probably want to stabilize before a release as illustrated
in Fig. 4.50.

Fig. 4.50: Use code churn to reason about delivery risk.

Inspect The Level of your Tasks

It’s a challenge to strike the right level when you partition your work into individual tasks. Large tasks
are hard to reason about and also less predictable to plan. That’s why we generally prefer small and
well-focused tasks.

CodeScene lets you inspect the impact of your project management tasks on the codebase in terms of
both code churn and collaboration (that is, how many authors worked together to solve the task?) as

94

CHAPTER 4. GUIDES

illustrated in Fig. 4.51.

Fig. 4.51: Inspect the code churn on a task level.

CodeScene uses your Ticket ID to group individual commits into tasks. As you see in Fig. 4.51, CodeScene
also calculates a Lead Time for each task. The lead time is the time that passed between the first and
the last commit referencing a specific task. Note that many tasks tend to be solved in a single commit.
In that case CodeScene doesn’t have the data to calculate a proper lead time. So CodeScene defaults to
one hour in case of a task that’s resolved in a single commit.

We recommend that you use the lead time data to track tasks that drift in time. Often, those tasks
suggests requirements that aren’t as well-defined as they could be. You can also use the lead time analysis
to track the effects of process changes in your organization.

4.2.8 Code Age

Code Age is a much underused driver of software design. In this guide we’ll cover how you interact with
the analysis results and how you use the presented information to guide your architectural decisions.

Drive to Stabilize

Code evolve at different rates. As you’ve learned in the Hotspots Guide (see Hotspots (page 56)), some
parts of your codebase tend to change much more frequently than others. The Code Age Analysis gives
you another powerful evolutionary view of your system. It’s a view that helps you evolve your codebase
in a direction where the system gets easier to maintain and more stable.

The age of code is a factor that should (but rarely do) drive the evolution of a software architecture. In
general, you want to stabilize as much code as possible. A failure to stabilize means that you need to
maintain a working knowledge of those parts of the code for the life-time of the system.

How do we measure Code Age?

CodeScene measures code age per source code file (or any content, actually). We define the age of code
as “the time of the last change to the file”. Note that this means any change. It doesn’t matter if you
rename a variable, add a single line comment or re-write the whole module. All those changes are, in
the context of Code Age, considered equal.

This definition is fairly rough and in the future we’re likely to take the amount of change to a file into
account when calculating age. But for now, age is that time since the last change. And the resolution is
months.

Inspect your Code Age Distribution

The age distribution graph shows how much of your codebase that you have managed to stabilize.

The example graph in Fig. 4.52 shows a codebase under heavy development. As you see, 20% of the
source code files have been modified the past month. Here’s how you use this information:

95

CHAPTER 4. GUIDES

Fig. 4.52: An example of code age distribution.

• See how much of the code you manage to stabilize.

• Identify sub-systems that have become commodities.

Let’s discuss these two points. First of all, you want to stabilize as much code as possible. Stable
code means that its quality is known. It also limits the size of the codebase where a developer has to
maintain an active mental model of the code. New code (0-2 months old) is of course where the current
development happens and you expect some activity here; a system that doesn’t change is a system that
no one uses. What you want to look out for is everything in between. That is, the code that’s neither
particularly old nor do we need to work with it on a monthly basis.

The reason we’d like to avoid having code that is neither old nor new has to do with human forgetting.
Such code is old enough that the original programmers are unlikely to remember the details. If we need
to dig into code that we no longer remember well, we pay a high price. So please watch out for a codebase
where you have a flat distribution.

The second use case for Code Age Distribution is to identify commodities. A commodity is code that’s
been stable for a long time. You see an example from the development of the Clojure programming
language in Fig. 4.53.

This is a good starting point; If you have a lot of code, as in the distribution in Fig. 4.53, that you haven’t
modified in years, there’s an opportunity to drive your software architecture in a leaner direction. To do
that we need to get more information. We need to understand where in the codebase those stable parts
are. That information is provided in the Age Ring View that we discuss below. Before we get there,
however, we need to be aware of some possible biases.

Possible sources of Bias in the Age Distribution

As noted above, code age is measured since the time of any change to a file. That means, if you re-
organize your codebase by moving source code files to different folders, your code will appear much
younger than it actually is.

Unfortunately we do not provide a way to counter this bias in the current version of CodeScene. But
please stay tuned for future versions where we’ll solve this.

96

CHAPTER 4. GUIDES

Fig. 4.53: Code age distribution in Clojure.

Identify Stable and Unstable Sub-Systems in the Age Ring View

Fig. 4.54: Annual rings of a tree.

So, the Code Age Distribution told us that we’ve a lot of code that we haven’t modified in a long time.
The Age Ring View lets you identify where those stable parts are.

Think of the Age Ring View as the annual rings of a tree, but for code. You specify a cut-off point for
the age you’re interested in and inspect the resulting view.

You select the cut-off point based on the Age Distribution in your codebase. The cut-off point should
mean something in your context. For example, we noted above the the Clojure codebase has a lot of
code that’s older than two years. Fig. 4.55 hows how we find that code.

97

CHAPTER 4. GUIDES

Fig. 4.55: Stable code in Clojure.

98

CHAPTER 4. GUIDES

Extract Stable Packages as Libraries

Once you’ve found stable packages you may want to consider to extract them as packages. If we transform
stable packages into libraries we get a set of advantages:

• Stable code lets us maintain long-term cognitive models: The developers now only needs to focus
on the API of these packages.

• Minimize cognitive load for new developers: As a direct consequence, new developers have less code
to understand as they enter your codebase. Age is not something that’s visible in the code itself
and it’s thus hard to know if I, as a developer, have to understand that part of the system or not.

• Know where extra tests add most value. You may want to write a set of high-level automated
checks around your extracted packages. Those test scripts would capture your understanding of
the package and ensure your expectations are correct. Since the code under test is stable, your
tests will be stable as well. The reason you have them is so that you can ensure that you don’t
break existing code when you someday have to modify a part that is a known commodity in your
system.

• Know which tests you don’t have to run in each build. Once you stabilize code, you don’t need to
run the unit-, function-, integration-tests for that part in every single build. That means you can
shorten your delivery cycle by ignoring tests in the parts of the system that haven’t been changed
for ages.

Identify Parts That Fail to Stabilize

Sometimes you’ll find a package (component, sub-system, etc) whose parts change at different rates as
in Fig. 4.56

Fig. 4.56: Code that stabilizes at different rates.

Code in the same package/subsystem that change at different rates is a warning sign. It either means
that 1) some of the code is of lower quality and we need to patch it often or 2) the parts model different
aspects of the problem domain.

Our general recommendation is to try to split packages by the age of the elements contained within them.
That is, organize your code by age. Consider the same strategy for larger files that fail to stabilize. Split

99

CHAPTER 4. GUIDES

their content into several, cohesive files. That way, you’ll get information on what parts of the problem
domain that are volatile and the parts that are stable.

Use Code Age to assess Knowledge Loss

A Code Age analysis has more usages than just software architecture. If you have areas of Knowledge
Loss in your codebase you can use Code Age to assess how severe the loss is. Is the abandoned code a
part that has been under active development recently? In that case, I would worry. If not, things look
better. Sure, you get a knowledge gap with each developer that leaves, but that gap is in a part of the
system that you haven’t been working on for a long time. Besides, since that code is so old, it’s also
likely that the original developers, even if they were still present, would have a learning curve themselves.

4.3 Architectural

4.3.1 Architectural Analyses

CodeScene’s architectural analyses lets you run Hotspots, Temporal Coupling, Code Health, and more
at the architectural level of your high level design. The results give you the power to evaluate how well
your architecture supports the evolution of your system.

With CodeScene, you get the same information on an architectural level as the file level analyses, as
illustrated in Fig. 4.57. Note that this is information that isn’t available in your code.

Fig. 4.57: High level architectural analyses on the technical and social aspects of code.

By enabling the architectural analyses, you also get a System Hotspots Health dashboad that shows you
the high-level metrics for each one of your architectural components or microservices.

This section of the guide walks you through the necessary configuration and gives you some ideas on
how to interpret and act upon the architectural analysis results.

What is an Architectural Component?

An Architectural Component is a logical building block in your system. For example, if you build
a Microservices architecture, each microservice could be considered a logical block. Similarly, if you
organize your code in layers (MVC-, MVP-, MVVM-patterns, etc.), each layer would be a logical block.

An Architectural Component could also be much more coarse. For example, let’s say that you’re inter-
ested in the co-evolution of your application code versus the test code. Perhaps because you suspect that

100

CHAPTER 4. GUIDES

Fig. 4.58: The System Health dashboard lets you monitor the evolution of your sub-systems, services, or microser-
vices.

Fig. 4.59: An example of architectural components.

101

CHAPTER 4. GUIDES

you spend way too much effort on keeping your automated tests up to date. In that case, you’d define
two Architectural Components: Application Code and Automated Tests.

You’ll learn to define your components in the next section. Before we go there, let’s have a look at the
end result.

As you see in Fig. 4.60, CodeScene presents a hotspot analysis on architectural level. This gives you
a high-level view of how your development activity is focused. You also see that you get the social
knowledge metrics on an architectural level too. We’ll discuss that in more detail later in this guide to
learn how we use them to analyse complex architectures like Microservices.

Fig. 4.60: High level architectural hotspots analysis.

Define your Architectural Components

You need to configure your Architectural Components in order to enable these analyses, and the Archi-
tectural Components you specify depend upon your architectural style. You may also want to specify
components that help you answer the questions you have. For example, do the change patterns in the
code match the intent of the architecture? Often, the potential for large maintenance savings are found
in these architectural analyses once you spot patterns that violate your architectural principles.

CodeScene offers flexibility in how you define your components. The tool uses glob patterns to identify
the files that belong to a specific component as illustrated in Fig. 4.61.

As you see in the picture above, you need to specify a pattern and the name of your component. All
content in your codebase that matches your glob pattern will be assigned to an architectural component
with the name you specified.

Let’s consider the example above to learn more about the format. The configuration in Fig. 4.61 speci-
fies the pattern spaceinvaders/source/sprites/**. That means that all content under the folder spacein-
vaders/source/sprites will be considered as the architectural/logical component Sprites.

In general, you want to match architectural components on the level of the different sub-folders of your
codebase. But you can of course provide much more granular filters and, with the power of glob patterns,
match all files sharing a common extension, or even individual files.

You can also map multiple folders to the same architectural component. A common example on this is
when you want to consider the application code and its associated unit tests as one logical unit. In this
case you’d add a second pattern to the Sprites component in Fig. 4.61: spaceinvaders/test/sprites/**.

102

CHAPTER 4. GUIDES

Fig. 4.61: Configure architectural components by specifying glob patterns for each logical component.

Use the Architectural Component Editor

The most common way of defining your architectural components is to use the Architectural Component
Editor. In the “Architecture” tab of your project’s configuration pages, a large button leads to the
Editor.

Fig. 4.62: CodeScene’s Architectural Component Editor provides a visual interface to your project’s files.

The Editor provides a visual interface to the files in your project. For this reason, it can only be used
after you run an initial analysis. Once CodeScene is aware of the files in your project, it will provide
you with the same circular visualization used for Hotspots and other analyses. You can zoom in and out
to choose the parts of your project that you want to include in a Component. The colors of the circles
indicate the type of files. A legend is available in one of the tabs of the sidebar:

When you have located a directory or a file that you wish to include in a Component, you have two
choices at the top of the sidebar on the right:

103

CHAPTER 4. GUIDES

Fig. 4.63: Choose either the pattern for the current directory, or write your own pattern.

104

CHAPTER 4. GUIDES

The most common action here is to click on “Select a component” under the first pattern, which, in
the example above is rails/activerecord/**. This pattern will match all the files and subdirectories in
the activerecord directory. You can either add the pattern to an existing Component, or create a new
Component based on your selection.

The other choice is to write a custom pattern. In this example, if we were only interested in the .yml
files in the activerecord directory, we could create a pattern like this:

Fig. 4.64: A custom pattern that selects all the .yml files inside a directory.

This way, while using the visual interface, you still have the full power of glob patterns. Note that
patterns are validated and must begin with the project root of the corresponding Git repository (rails/
in this example). or with *. The interface will prevent you from entering invalid patterns.

If you make a mistake, you can remove the pattern from the Component:

Fig. 4.65: Remove a pattern

The Architectural Component Editor also comprises a form-based view which you will find by scrolling

105

CHAPTER 4. GUIDES

further down the page.

Fig. 4.66: The Editor also has a form-based view

You can make changes here just like in the visual interface, adding, editing or deleting components and
patterns. Note that when a component contains zero patterns, it is deleted.

Changes are only stored when you click on the “Submit” button at the bottom of the page. Your new
Architectural Components will be used the next time an analysis is run on your project.

Import or Export Architectural Component Definitions

Instead of specifying the patterns manually in the section above, you can import a CSV file with the
definitions. This is a simpler option in a large system where you can script the generation of the CSV
to import:

• Your CSV file must not include a header row.

• The CSV file shall contain two columns: 1. the Component Name and 2. its Glob Pattern.

• The fields in your CSV are separated by commas.

Fig. 4.67 provides an example on a CSV file used to import architectural components.

Fig. 4.67: Import your definitions of architectural component from a CSV file with this format.

The file content above defines five architectural components and maps each one of the to a logical
architectural name. As you see, you can map several folders to the same architectural component. The
Workbench component above is an example on this. As we import the file, CodeScene will generate a
definition for Workbench as illustrated in Fig. 4.68.

Fig. 4.68: Map two separate folders to the same architectural component.

106

CHAPTER 4. GUIDES

You can also share architectural components between projects by exporting them to a CSV file and then
importing them in another project.

System Complexity Trend

CodeScene calculates a trend of how your system, as a whole, has evolved over time.

Please note that you need to enable this analysis; It’s expensive in terms of analysis time, which is why
it’s optional. Fig. 4.69 shows how to enable the trends.

Fig. 4.69: Enable the trend analysis of architectural components in your project configuration.

Once you’ve enabled the architectural trends, CodeScene will calculate an overall view of the evolution
of your system as illustrated in Fig. 4.70.

You use this information to see if the system has stabilized and entered a maintenance phase or if it still
evolves rapidly. You can also correlate the growth patterns to how the staffing has looked over time -
did more people really resulted in a faster growth?

CodeScene also presents a breakdown of the system complexity per architectural component as illustrated
in Fig. 4.71.

Know the Biases in System Complexity Trends

The system/architectural complexity trends don’t take all your historic development into consideration.
The trends are based upon the active amount of code. That is, only the code that’s included in your
repositories today will be considered. More specific, this means that:

• If you have deleted whole files and folders in your codebase it won’t reflect in the trends.

We also want you to be careful when interpreting the results of an analysis that use a shorter time span
than that of the whole repository lifetime. In such a shorter analysis period, only the files with active
development activity are included in the codebase. You’ll still be able to see a trend and reason about
possible complexity growth in your code. However, the absolute numbers are likely to be lower than the
total amount of code; Only files that you have modified are included in the trends.

107

CHAPTER 4. GUIDES

Fig. 4.70: The evolution of the complete codebase.

Fig. 4.71: The architectural trends let you view how the development effort has shifted over the years.

108

CHAPTER 4. GUIDES

Interpret the Architectural Analysis Results

The Architectural Analyses lets you focus on logical building blocks rather than individual files. This
allows you to identify architectural Hotspots, as shown in Fig. 4.72.

Fig. 4.72: Using the hotspot analysis for architectural components.

The architectural analyses also lets you inspect the complexity trends of architectural hotspots. Note
that you need to enable the architectural trends in your project configuration as noted above.

Measure Architectural Change Coupling and Impact

The architectural analyses let you measure and visualize change coupling between architectural compo-
nents.

You use this information to:

• identify expensive modification patterns,

• ensure that your dependencies match the architectural principles, and

• to measure how well your software architecture supports the way your system evolves.

The analysis also includes a trend measurement where CodeScene detects dependencies that grow
stronger over time. This information is particularly useful for complex, distributed systems like mi-
croservices.

Fig. 4.73 shows an example in Spinnaker, a microservices codebase where each service is located in a
separate Git repository.

From here, CodeScene lets you dig deeper and explore the change coupling between individual files,
potentially located in separate Git repositories as shown in Fig. 4.74.

Of course, the architectural change coupling works well in a monolithic codebase as well.

Evaluate Conway’s Law

CodeScene measures the knowledge distribution on an architectural level too. This gives you a powerful
tool to evaluate how well your architecture aligns with your organization, aka Conway’s Law as illustrated
in Fig. 4.75.

The same analysis also lets you measure the coordination needs on an architectural level. This is useful
to detect sub-systems that become coordination bottlenecks or lack a clear ownership, as illustrated in
Fig. 4.76.

109

CHAPTER 4. GUIDES

Fig. 4.73: Change coupling between different microservices.

You use this information to find parts of the code that may have to be split into smaller parts to
facilitate parallel development, or, to introduce a new team into your organization that takes on a
shared responsibility.

The high-level analyses are particularly useful if you work on a (micro) service oriented architecture. In
that case you also want to investigate Technical Sprawl, which we discuss next.

Measure Technical Sprawl

One of the big selling points behind Microservice architectures is the freedom of choice when it comes to
implementation technologies. Using a Microservice architecture, each team is free to chose the program-
ming language they think makes the best fit for the problem at hand.

In practice, however, this freedom may lead to a sprawl in programming languages that makes it hard
to rotate teams. It also puts you – as an organization – at risk when the only people who master a
particular technology leaves. Thus, CodeScene provides analyses to measure your technical sprawl, as
illustrated in Fig. 4.77.

The technical sprawl analysis is particularly useful for off-boarding. Let’s say that we want to move a
developer to another project or, worse, someone decides to leave the organization. In that case we run a
pro-active simulation of knowledge loss (see Knowledge Distribution (page 119)) and ensure that we still
have the technical competencies we need within the organization, as illustrated in Fig. 4.78.

4.4 Social

4.4.1 Delivery Effectiveness by Organizational Trends

The Delivery Effectiveness measures the development throughput in the context of organizational trends.

110

CHAPTER 4. GUIDES

Fig. 4.74: Change coupling between files implemented in different programming languages and located in separate
Git repositories.

Fig. 4.75: Measure Conway’s Law in your codebase.

111

CHAPTER 4. GUIDES

Fig. 4.76: Find team coordination bottlenecks.

Fig. 4.77: Technical Sprawl shows the main programming language used for each component or service.

112

CHAPTER 4. GUIDES

Fig. 4.78: Combine Technical Sprawl with Knowledge Loss for off-boarding.

113

CHAPTER 4. GUIDES

The throughput measure is based on the ideas from Brooks’ Law. Brooks’ Law states that adding more
people to a late software project makes it later. The reason for this is communication and coordination
overhead. While we add more people to a project, the total number of available hours increases linearly
but the coordination paths increase exponentially. Hence, there’s a point beyond which each additional
person’s hours get comsumed by the increased coordination efforts. . . and then some.

Hence, use CodeScene’s development output to measure the effects of any changes in staff as shown in
Fig. 4.79.

Fig. 4.79: Trends in development output with respect to the number of contributing authors.

The development output graph shows the following data:

• Development Output: This is measured by taking all commits during a week and dividing them by
the number of contributing authors. The resulting normalized output metric gives you an estimate
on the organizations’s output.

• Authors (month): This trend shows how many unique authors that have contributed code over a
month. This trend is likely to reflect the total number of developers on the project.

If your project is at risk of falling victim to Brooks’ Law, then you will see this as an increased distance
between the total number of authors and their normalized output.

Like always when trying to measure things like developer and organizational productivity, the absolute
numbers aren’t that interesting; the interesting thing is the trend. Do you get an increase or decrease in
response to changes in staffing?

Delivery Effectiveness by Team

By configuring teams in CodeScene, you enable a detailed breakdown of the Delivery Effectiveness to a
team level:

The trends let you detect the frequency of contributions, patterns in each team’s contributions, as well
as detecting when a team stops contributing, perhaps as a shift in responsibility to a different part of
the codebase.

114

CHAPTER 4. GUIDES

Fig. 4.80: Trends in development output for each team.

Follow-up with in-depth Analyses of the Team Composition

Should you identify a decrease in development output, then we recommend getting more information via
the following analyses:

• Coordination Needs: Check if the teams and/or individual developers need to coordinate their work
in the hotspots using the Parallel Development and Code Fragmentation (page 127) analysis.

• Decrease in Code Health: The decrease in development output could also be due to an increased
level of technical debt, so inspect the Code Health – How easy is your code to maintain and evolve?
(page 64) analysis.

• Team Composition: Measure the on-boarding and experience effects as described in the next section
below.

Measure Team Composition Trends

While Brooks’s Law is one potential reason that a project might hit a wall, there might be other explana-
tions as well. Sometimes a development effort is appropriately staffed, but it takes time for people to get
up to speed with a new codebase; on-boarding always comes with a cost. Hence, the team composition
in terms of experience on your specific codebase is an important factor.

CodeScene measures team experience as shown in Fig. 4.81.

The team composition visualization includes the following information based on the actual contribution
span of each author:

1. Monthly team composition in terms of experience on this particular product. There are three
categories: onboarded (0-3 months), experienced (6-12 months), and veterans (+12 months).

2. Total accumulated experience in terms on months worked on the codebase (black line).

3. “Qualitative” team experience: this is a weighted value where we consider the experience of each
developer currently in the team (blue line). On-boarding a developer will come at a slight cost for
a period of time. The model also takes ramp-up effects into consideration.

115

CHAPTER 4. GUIDES

Fig. 4.81: The team composition with respect to experience accumulation and on-boarding.

Often, the area between the black and blue lines is the interesting part. The wider the gap, the higher the
on-boarding costs. On-boarding can of course also be viewed as an investment. From that perspective,
the area between the lines shows the unrealized potential if the organization manages to keep the team
stable and avoid high author churn.

Highlight the Effects of Author Churn

The team composition analysis is also useful to highlight the effects of High Author Churn: Taking people
in and out of a project comes with a cost due to lower system mastery and repeated on-boarding effects.
Keeping a team stable allows for learning and is very likely to have a positive impact on the development
output.

Fig. 4.82 shows the effects on high author churn, where the qualitative team experience fails to accumu-
late:

Fig. 4.82: An example on high author churn, likely to lead to low system mastery and constant on-boarding costs.

When used together with the Brooks’s Law development output trends, these graphs help visualizing
the costs and effects over on-boarding and staffing changes over time.

116

CHAPTER 4. GUIDES

4.4.2 Social Networks

The Social Network Analysis gives you a heuristic on the coordination needs between developers on
different teams. The idea is based on Conway’s law - a project works best when its organizational
structure is mirrored in software. Using the Social Network Analysis, you now have a way to ensure that
your organization matches the way the system is designed with respect to the work the developers do.

The Social Network Is Build from How the Code Evolves

The social network paths are mined from how your codebase is developed. You see an example of a
social network in code in Fig. 4.83.

Fig. 4.83: An example of a social network in code.

The network is built by identifying developers that repeatedly work in the same parts of the code. The
more often they work in the same parts of the code, the stronger their link in the network. Note that
CodeScene filters developers with weak links since they would clutter the visualization (you can change
the threshold as described in Project Configuration (page 168)).

117

CHAPTER 4. GUIDES

Define Your Development Teams

The social network lets you identify developers that should be close from an organizational perspective.
The visualization in Fig. 4.83 shows an example of an organization with 8 development teams. If you
hover over a developer, you highlight their peers that tend to work in the same parts of the codebase.
You use this information to evaluate how well your organization supports the way the codebase evolves.

That also means you want to compare your organizational chart with the information in the generated
social code network. Any discrepancies has to be understood.

Align Your Architecture and Organization

In a perfect world most of your communication paths would be between developers on the same team.
That is, the teams have a meaning from an architectural perspective; People on the same team work on
the same parts of the codebase. They share the same context, know each other and have a much easier
time coordinating their work.

However, sometimes the world looks radically different. Have a look at Fig. 4.84.

Fig. 4.84: An example of a social network anti-pattern.

The visualization in Fig. 4.84 shows an organization with severe coordination problems. Since the data
has been made anonymous to protect the guilty, you cannot read the names of the teams or developers.
But you still see that the organization has four teams with a high degree of inter-team coordination
between virtually every developer. In practice, this isn’t an organization with four different teams.
Rather, it’s an organization with one giant team of 29 developers with artificial organizational boundaries
between them. The resulting process loss due to coordination needs is likely to be severe and lead to
inefficient development, quality issues and code that’s hard to evolve.

118

CHAPTER 4. GUIDES

4.4.3 Knowledge Distribution

CodeScene measures several aspects of knowledge distribution:

• Key personnel risks: Are there any critical parts of the codebase that are in the head of just
one developer?

• Low system mastery: What’s the impact if a developer leaves or moves to a different product
line? Can you continue to successfully maintain the codebase?

• Coordination bottlenecks: Are there any parts of the code where multiple teams have to
coordinate their work? Such modules frequently lead to waste via merge conflicts and tend
to be defect dense.

This guide shows you how to measure these aspects of your software development.

How Do We Measure Knowledge?

The knowledge metrics are based on the amount of code each developer has contributed. CodeScene
looks at the deep history of each file to calculate contributions. This makes sense for two different
reasons:

1. The last snapshot of a source code file wouldn’t be good enough since such shallow ownership is
sensible to superficial changes (e.g. re-formatting issues, automated renaming of variables, etc).

2. Even if one developer completely rewrites a piece of code, its original author will still retain some
knowledge in that area since they’re familiar with the problem domain. The metrics in CodeScene
acknowledge that and will retain some knowledge for the original developer as well.

CodeScene uses the name of each committer to calculate knowledge metrics. So please make sure you
understand the possible biases discussed in the guide Know the possible Biases in the Data (page 132).

Detect Knowledge Risks

CodeScene’s dashboard presents a high-level summary of the knowledge distribution and existing knowl-
edge loss (e.g. code written by developers who have since left the company or project):

A high portion of code written by a smaller group of people might be a risk; when a core developer
leaves, the knowledge loss increases and the lower system mastery makes it more risky to maintain the
system. Using the Knowledge Risk view, you can identify those areas pro-actively:

The Knowledge Risks analysis identifies and highlights the following patterns:

• Knowledge Island in Complex Hotspot: A module that’s written mostly by one developer,
and that module is a hotspot with code health issues. Consider to on-board at least one more
person in these areas as these hotspots present a significant key personnel risk.

• Knowledge Island: A knowledge island is code written mostly by one developer, but the code is
of acceptable code health. You might still face a key personnel risk, but on-boarding new personnel
in this area should be lower risk than in complex hotspots. Make sure that knowledge islands are
supervised using CodeScene’s goals (see Manage Hotspots and Technical Debt with Goals (page 70)).

• Complex Code by Former Contributors: This type represents code with low code health,
where the majority of that code is written by former contributors. It’s code with low system
mastery. Modifying such code is always an increased risk, so make sure to schedule additional time
for learning.

• Multiple Active Developers: This type indicates that the code is actively worked on and that
the detailed knowledge is shared by at least two developers.

Finally, note that CodeScene also presents warnings for knowledge risks as part of the virtual code review.

119

CHAPTER 4. GUIDES

Fig. 4.85: Dashboard summary of the knowledge distribution.

Fig. 4.86: Identify risks in the knowledge distribution.

120

CHAPTER 4. GUIDES

Explore the Individual Knowledge Map

The first knowledge analysis measures the knowledge distribution for individual developers in your code-
base.

Each developer is assigned a color in the following visualization. The color of each file represents its
main developer (that is, the developer who has contributed most of the code). You see the resulting
visualization in Fig. 4.87.

Fig. 4.87: An example of a knowledge map, click on a circle to get more information.

All knowledge maps are interactive:

• Click on a package in the visualization to zoom in on the details.

• Click outside the package to zoom out.

• Click on a circle representing a file to get detailed information.

Once you click on a file you get the option to explore who the other authors are, as shown in Fig. 4.88.

CodeScene also supports knowledge maps for pair- and mob programming, where the credits are split
between the contributors in the pair. However, you need to configure your pair programming patterns
in CodeScene to activate this feature. Refer to in Configure Developers and Teams (page 180) for the
configuration options.

Explore your Team Knowledge Maps

CodeScene also measures knowledge distribution on a team level and this information is usually even
more valuable than the individual metrics.

As soon as you’ve assigned developers to a team, as described in Configure Developers and Teams
(page 180), CodeScene will accumulate their individual knowledge into their teams. The analysis results
are presented using the same principles as for the Individual Knowledge Map. Only now, each color
represents a team as shown in Fig. 4.89.

The Team Knowledge Map lets you reason about both the responsibilities of the different teams. In
general, you want to ensure that your team organization is reflected in the software architecture of your
system. For example, the analysis in Fig. 4.89 has a configuration for three devlopment teams: Net,
Unix, and Unicode. The analysis shows that each time has a clear area of responsibility. However, you
get more details by clicking on the Coordination Needs aspect as shown in Fig. 4.90.

121

CHAPTER 4. GUIDES

Fig. 4.88: Inspect the details of each file in the knowledge map.

Fig. 4.89: The distribution of your teams in the codebase.

122

CHAPTER 4. GUIDES

Fig. 4.90: The coordination needs between your development teams.

The coordination analysis shows you the parts of the code where multiple teams have to coordinate
their work. From here you can explore which teams that are involved. The coordination analysis is also
described in more detail in Parallel Development and Code Fragmentation (page 127).

Finally, make sure to read the discussions in the guide Social Networks (page 117) for more information
on the organizational theories and how they correlate to the quality and efficiency of your organization.

Measure from the date of the last organizational change

Development organizations aren’t static. People rotate teams, new teams are formed, and old ones
abandoned. Each change introduces a possible bias into the team-level metrics.

The best way to avoid those biases is to select an analysis start date that represents the date of your last
organizational change. For example, let’s say you changed the team structure back in January 2017. In
that case you want to start your team analysis from that date, as illustrated in Fig. 4.91.

Note that you typically want to use a longer analysis time span for technical analyses. CodeScene
resolves this by letting you configure two separate time spans, as illustrated in Fig. 4.91.

Visualize Code Ownership Patterns

Many Git hosting platforms (e.g. GitHub, GitLab, BitBucket) support the concept of CODEOWNERS.
CODEOWNERS is a file where your organization can specify code owners for different parts of your
codebase. The ownership is specified by using a set of glob patterns that match different modules, file
types, or specific content. Here’s an example:

Specify the default owners in case the specific patterns
given later won't match:
* @TheArchitect @TheMicroManager

The last matching pattern gets precedence, so here
we specify the owners for invidual sub-systems:
/src/frontend @js-owner
src/backend @go-owner
docs/* @TechWriter

In this examples, the hypothetical user names @TheArchitect, @js-owner, etc. would match real people
in your organization. You can of course also specify e-mail addresses instead of user handles.

123

CHAPTER 4. GUIDES

Fig. 4.91: The coordination needs between your development teams.

If you have a CODEOWNERS file, CodeScene will include it in the analysis. You just need to specify
that path to the file since it might vary.

In a multi-repository analysis project you might of course have multiple CODEOWNERS files. That’s
OK. Should they be in different relative locations, then you just specify all options using a semicolon
separated list.

CodeScene will now mine and aggregate the code ownership as shown in Fig. 4.93.

The main use case for this information is to:

1. Ensure that no critical parts of your code lacks ownership.

2. Ensure that your hotspots have a clear and strong ownership. In particular, you want to ensure
that there’s a single owner for any hotspots in order to avoid diffusion of responsibility.

Notify Code Owners on Failed Quality Gates

CodeScene will also include the ownership information in case a CI/CD quality gate fails. You see an
example in Fig. 4.94.

Uncover the Knowledge Loss in your Codebase

Knowledge loss represents code that is written by a developer who is no longer part of your organization
or project. You use this information to reason about the knowledge distribution in your codebase and as
part of your risk management since it is an increased risk to modify code we no longer understand. In
addition, you can also use the analysis pro-actively to simulate the consequences, in terms of knowledge
loss, of planned organizational changes.

The Knowledge Loss analysis will accumulate the contributions of all developers that you have marked
as Ex-Developers in your configuration (see Configure Developers and Teams (page 180)). Those parts of

124

CHAPTER 4. GUIDES

Fig. 4.92: Specify the relative path to the CODEOWNERS file.

Fig. 4.93: CodeScene visualizes the code owners.

125

CHAPTER 4. GUIDES

Fig. 4.94: CodeScene notifies code owners when a quality gate fails.

the codebase that are dominated by Ex-Developers are marked as red in the knowledge loss visualization.
Fig. 4.95 shows an example from an organization where some core developers have left.

Fig. 4.95: An example on a knowledge loss analysis.

To inspect the knowledge loss you just click on a file, as shown in Fig. 4.96.

Note that there’s a special label in the knowledge visualization: Inconclusive. Inconclusive means that
CodeScene cannot determine the original author of a piece of code. This is something that happens if you
run a knowledge analysis on a shorter time span than the total lifetime of a codebase. CodeScene tracks
moved and renamed content, but in doing so it depends on the underlaying object model of Git. So in
the rare cases where copied content doesn’t get detected as such, the code may show up as inconclusive.

Use knowledge loss as a simulation

There are several uses for the knowledge loss information. In retrospect, you use it as part of your
planning and risk management since it is an increased risk to modify code we no longer understand.

However, the knowledge loss analysis is much more powerful when used as a simulation. In this case you
use CodeScene to simulate different scenarios and how they would affect your organization. Used this
way, the knowledge loss analysis becomes a pro-active tool that helps you avoid unpleasant surprises in
case a contractor leaves or a developer gets moved to a different project.

126

CHAPTER 4. GUIDES

Fig. 4.96: Inspect the detailed knowledge loss of a file.

The guide in Team Planning with the On- and Off-Boarding Simulation (page 159) describes how to
simulate upcoming knowledge loss so that you can act on time.

How is the social side of code relevant?

Software development at scale is a social activity. We work in teams, sometimes distributed, and need
to communicate and coordinate to solve our tasks. Building an organization responsible for creating and
evolving a system is a necessity as soon as your codebase has grown beyond a certain size.

Moving from individual developers to teams does not come free; No matter how efficient we, as an
organization, are, we’ll always pay a price. The cost of team work is known as process loss. Process
loss is the theory that a team, just like a mechanical machine, cannot operate at 100 percent efficiency.
In the mechanical world we have inefficiencies like friction and heat loss. Our software equivalents are
coordination and communication. The main challenge in most software projects is to minimize the
process loss. Failures to do so often come off as technical issues, when in reality those issues have social
roots.

The software industry has been aware of these issues. But until now, we’ve never had a way to measure
them. This is one of the key reasons we developed CodeScene; with these analyses you’re now able to
make organizational decisions based on data from how the teams actually work with the code.

4.4.4 Parallel Development and Code Fragmentation

Large scale software development is a social activity. However, the technical nature of our work tends to
obscure that fact and we often mistake organizational issues for technical problems.

One such example is excess parallel development. Excess parallel development is something that happens
when your architecture cannot support the way you’re organized. You may have 20-30 developers that
need to modify the same file, but for different reasons. The symptoms you see are often technical, for

127

CHAPTER 4. GUIDES

example expensive merges, code that’s hard to understand since it’s changed by different people all the
time, or unexpected feature interactions. CodeScene’s Parallel Development analysis helps you uncover
and prioritize these problems.

Before you read on, please note that CodeScene uses the name of each committer to calculate the
fragmentation metrics. So make sure you understand the possible biases discussed in the guide Know
the possible Biases in the Data (page 132).

The Coordination Needs View Uncovers Excess Parallel Development

Excess parallel development means the modules have a high fragmentation value. A high fragmentation
value means that the development effort is shared between multiple programmers. This is a risk you want
to be aware off - the number of programmers is one of the best predictors of the number of post-release
defects in a module. The more programmers, the more quality issues in that code.

CodeScene runs the fragmentation analyses on both individual authors and teams. You may want to
focus on the team view in case you have cohesive teams with well-defined responsibilities.

If your organization doesn’t have any team structure, start with investigating the fragmentation by
authors as illustrated in Fig. 4.97.

Fig. 4.97: The fragmentation map shows files with excess parallel development.

The fragmentation map in Fig. 4.97 shows the fractal value of each file. A fractal value is the degree of
parallel work:

1. Fragmentation 0% (zero): This means that the file has had a single developer working on it.

2. Fragmentation closer to 100%: The closer to 100% the fragmentation gets, the more developers
behind the code and the smaller the contribution of each developer.

Once you’ve found a part of your codebase with excess parallel work you want to get more detailed
information. The Fractal Figures described in the next section gives you all the details you need.

Get more Detailed Information with Fractal Figures

The fragmentation map in Fig. 4.97 is interactive. That means you can click on each file and inspect the
amount of fragmentation as illustrated in Fig. 4.98.

128

CHAPTER 4. GUIDES

Fig. 4.98: An example of a developer fragmentation. Hovering a colored fragment shows the developer and the
relative contribution.

129

CHAPTER 4. GUIDES

4.4.5 Modus Operandi

Modus Operandi is the method of operation. It’s the signature for how you work with the codebase and
lets you discover trends in the type of coding you do.

What is Modus Operandi?

Forensic psychologists refer to Modus Operandi as the method of operation, a criminal signature. Soft-
ware teams have a modus operandi, too. Our analyses help you uncover it to better understand how the
team works. The information will never be precise, but lets you ask the right questions and guide your
discussions by opening a new perspective on your daily work.

Inspect Trends in Your Commit Messages

CodeScene’s JIRA integration (see Project Management Analyses (page 133)) lets you discover trends
in the type of work you do. However, not all organizations use JIRA. There may also be work-related
information that isn’t available in JIRA.

Thus, CodeScene provides a second data source for work-related trends: your commit messages. Your
commit messages is an interesting data source too, as illustrated in Fig. 4.99

Fig. 4.99: Your commit messages contains work-related information.

By default, CodeScene will identify all commit messages that contain the texts bug, fix, or defect, but
you can override the defaults and provide any patterns as illustrated in Fig. 4.100.

Note that the matches are always case insensitive. That is, if you specify bug, CodeScene will match
both bug and Bug.

4.4.6 Author and Team Statistics

CodeScene provides an aggregated view of all author and team contributions.

Detailed Team Statistics

The team statistics let you view the contributions aggregated on a team level as show in Fig. 4.101.

The detailed team statistics are calculated based on the analysis start dates for team analyses.

130

CHAPTER 4. GUIDES

Fig. 4.100: Inspect all commits that mention a particular word or phrase.

Fig. 4.101: The detailed team statistics show the aggregated contributions on a team level.

131

CHAPTER 4. GUIDES

The team statistics also include a timeline that shows how the contributions – on a team level – are
distributed over time (see the author example below for an example – the team view provides the same
data).

Detailed Author Statistics

The author information is intended as descriptive data that lets you find long-term contributors as shown
in Fig. 4.102.

Fig. 4.102: The detailed author statistics show the aggregated contributions.

CodeScene also calculates a timeline with a heatmap of the ontributions by each active author, as shown
in Fig. 4.103.

Fig. 4.103: The timeline shows a heatmap of active author contributions.

The author heatmap shows the number of recorded commits by each active author. Note that the
contributions are filtered according to your project configuration. That is, author contributions to
blacklisted or excluded content aren’t included in the statistics.

4.4.7 Know the possible Biases in the Data

Our social metrics, like all software metrics, are an approximation of the real world. There will always
going to be corner cases and biases in the data. In particular, there are some situations where the metrics
don’t perform as well. So please read the following section in order to minimize the bias in the analysis
results.

132

CHAPTER 4. GUIDES

Developers with Multiple Aliases

A developer may end up with multiple aliases. Perhaps they’re committing from both a personal- and
a company account. Or they’ve changed their e-mail address. This introduces a bias in the data since
CodeScene uses the name of each developer as their identification.

Fortunately, you can avoid this bias by resolving the author aliases in CodeScene’s configuration UI. As
an alternative to the UI, you may also use a Git feature called .mailmap. A .mailmap is a file that
you include in the root of your Git repository. The file specifies a mapping from multiple names and
addresses to the canonical name and address of each developer with multiple aliases. It’s straightforward
to use a .mailmap, so please check out the git log documentation for the format.

Autosquash Commits

Some teams may use a Git feature called autosquash. This feature is a way of re-writing the development
history. It may be fine if squashing is used for the work of an individual developer. Unfortunately the
feature is sometimes used to combine the work of multiple programmers into a single commit.

The consequence is that the analyses lose important data for temporal coupling and, in particular, the
social metrics become more limited than they’d have to be. For example, it’s not possible to generate
a knowledge map over individual programmers, which means that you miss the opportunity to use the
analysis methods for on- and off-boarding.

It’s highly recommended that you reconsider the autosquash strategy in case you apply it today. In
general, the work of multiple programmers should not be compressed in a single commit.

Pair Programming

The knowledge metrics in CodeScene are based on the author of the code as recorded by Git. This may
obviously be misleading if your organization does pair-programming.

CodeScene does supports knowledge maps for pair and mob programming, where the credits are split
between the contributors in the pair. Refer to in Configure Developers and Teams (page 180) for the
configuration options needed to activate this feature.

4.5 Project Management

4.5.1 Project Management Analyses

CodeScene’s suite of project management metrics let you measure where you spend your costs and inspect
both cost and activity trends. The analysis lets you assess costs on both the architectural level, such as
components and sub-systems, as well as on individual files.

The Need for Project Management Metrics

CodeScene’s project management metrics answer two common questions:

1. How shall we prioritize improvements to our codebase?

2. How can we follow-up on the effects of the improvements we do?

Sure, our Hotspot analysis already addresses these questions and gives us a tool to prioritize. However,
there’s a linguistic chasm between developers and managers here; To a manager, a “commit” doesn’t
carry much meaning. A commit is a technical term that doesn’t translate to anything in the manager’s
world. At the same time, technical debt and low quality code are important subjects to address. So how
can we talk the language of a manager while still tying our data back to something that communicates
with the developers responsible for the code?

133

https://git-scm.com/docs/git-shortlog

CHAPTER 4. GUIDES

CodeScene bridges this chasm by introducing a suite of project management metrics. These metrics
combines our existing version-control measures with data from Jira. This gives you Hotspots measured
by cost rather than the more technical change frequency metric. It also gives you trends in both your
costs and the type of work you do (e.g. features vs maintenance). Let’s see how it is done.

Learn to Interpret the Project Management Metrics

You need to configure CodeScene to access the Jira service. Once that’s done, CodeScene will automat-
ically retrieve the Jira data and run an analysis on it.

Click on the Project Management tile to get to the detailed results. The detailed results presents Hotspots
by cost and let you access the trends. Let’s look at some examples.

The Hotspots by Costs provide an overview of which part of the code that are the most expensive to
maintain. The analysis works just like the normal technical Hotspot analysis. The main difference is that
these Hotspots are ranked by cost rather than the change frequency of the code. You see an example in
Fig. 4.104

Fig. 4.104: A Hotspot analysis by cost lets you see where you spend most time.

As you see in Fig. 4.104, most time is spent in a module named project_feature.clj. That means you
want to prioritize improvements to that code. Before you do that, however, you’d like to look at the cost
trend to see if this is recently accumulated cost or if the Hotspot has been expensive to maintain for a
long time.

You access the cost trends by clicking on a Hotspot and select Trends.

The cost trend is presented in two different graphs:

1. The first graph will show the accumulated cost by month for the selected Hotspot. The costs are
a summary of all Jira issues that have involved work in this specific Hotspot, as illustrated in Fig.
4.105.

2. The second graph shows the cost distributed across the type of work you’ve done.

You use this information to ensure that the code evolves in the right direction. For example, you’d like
to see a decrease in the amount of bugfixes and an increase in the amount of feature related issues. You
can also use the cost trends to measure the effect of large-scale improvements as illustrated in Fig. 4.106.

Measure Costs and Activity on Sub-Systems

In many systems the semantically interesting unit isn’t individual files but rather sub-systems and com-
ponents. Thus, CodeScene calculates the same cost metrics on an architectural level too. All you have

134

CHAPTER 4. GUIDES

Fig. 4.105: Use the trends in type of work to see where your time is spent.

Fig. 4.106: Use the Cost Trends to measure the effect of improvements.

135

CHAPTER 4. GUIDES

to do is to enable your architectural analyses.

Fig. 4.107: Calculate hotspots by costs on architectural level

This kind of information gives you an overview of the costs on the sub-system level, and represents
information that is relevant to non-technical managers too. Thus, use the analysis on this level to bridge
the gap between the technical side of the organization and the business side by letting everyone share a
common picture of how the system evolves.

A Note to Developers

You’ll probably notice a high correlation between the project management results and the results from the
technical Hotspot analysis. This is an expected finding. However, the project management metrics have
another usage. Since the project management metrics speak the language of a non-technical managers,
these analyses provide a basis for communication. Use this data to motivate investments in software
quality, like for example to explain the need for a larger refactoring of one ore more top Hotspots.

Pre-Requisites for the Project Management Analyses

This suite of analyses fetches data from a project management tool like Jira. CodeScene provides a Jira
integration as a separate service. However, the Jira data only contains the raw costs (hours, story points,
etc) of a story - there’s no specification of how those costs are shared across the different parts of your
codebase.

CodeScene solves this problem by mapping the Jira data to our wealth of version-control metrics. There
are a number of pre-requisites that are mandatory for this process to work:

• You need to include your Jira Ticket/Issue/Story ID in the commit messages. We use that infor-
mation to unify the data sources.

• You need to have a cost metric in your Jira story. CodeScene supports time-based costs (i.e.
minutes of time to completion) and story points.

136

CHAPTER 4. GUIDES

Limitations in the Analysis Data

The cost trends and analysis results will never be better than the available raw Jira data. That is, if
your reported costs on a Jira story are too far off, the analysis don’t have any way to adjust it.

In addition, there are a number of limitations that you need to be aware of:

• The total costs for a Jira issue are assigned to the last known month that the issue was worked on.
So if you have long-running issues, you’ll see the costs assigned to a single month even if the issue
took, let’s say, 3 months to implement.

• All files that were worked upon in a Jira issue get assigned the same cost. In reality, some files
typically account for a larger amount of the total costs, but there’s no way for CodeScene to know
that. Instead we treat each file as an equal contributor to the issue. Note that the architectural
level analyses mitigate this issue as they show the aggregated costs.

In general, you’ll find that you get much more out of the analysis results as long as you remember that
the project management metrics are heuristic in their nature rather than precise predictions of the future.

4.5.2 Risk Analysis

CodeScene analyses the risk of each commit. This lets us present both a risk trend and also an early
warning as soon as a high risk commit is detected.

You use this information to react early and focusing code reviews and testing. You also use the overall
risk trend as input and feedback on planned delivery activities.

How Does CodeScene Know That a Commit is High Risk?

CodeScene calculates a unique risk profile for your codebase. The risk profile is based on how the system
has evolved and what a typical change looks like. That is, CodeScene looks more at how a commit looks
than the changed code itself.

CodeScene’s risk profile is a combination of technical and social metrics. The technical metrics relate to
the amount of code that is changed, how many different files that are changed, and the diffusion of the
changes (e.g. how many different sub-systems does the commit touch).

The social dimension of the risk profile relates to the experience of the programmer doing the change.
The more experienced the programmer, the lower the risk. This means that two commits with identical
changes may be classified differently depending on the programmer who made the change; Experience
mediates risk. For example, if I make a large sweeping change to the Linux kernel, my change probably
has higher risk than an identical change made by Linus Torvalds. Please note that experience is relative
to your codebase and measured as how much each programmer has contributed to your code historically.

The risk classification that you’ll see in CodeScene always combines these technical and social dimensions.

What’s the Scale of Commit Risks?

CodeScene scores each commit on the range 1 to 10. 1 is a low risk change and 10 is the highest risk.
By default, CodeScene flags all commits with a risk of 7 (or higher) as high risk. You can change this
threshold in the project configuration.

Inspect your Risk Profile

CodeScene delivers an early warning as soon as a high risk commit is detected as illustrated in Fig. 4.108.

Click on the early warning shown in Fig. 4.108 to view the commit details as illustrated in Fig. 4.109.

CodeScene also calculates a rolling average of your risk profile. This analysis lets you reason about risk
trends in your project and relate that trend to both your ongoing work as well as predict delivery risk.

137

CHAPTER 4. GUIDES

Fig. 4.108: An Early Warning for recent high risk commits.

Fig. 4.109: Inspect the details of each recent high risk commit.

138

CHAPTER 4. GUIDES

Fig. 4.110: The risk trend shows the average risk in the evolution of your codebase.

The example in Fig. 4.110 shows a project where there’s a significant increase in the average risk during
development. When you see a trend like this it’s important to understand why. Perhaps several large
features are being implemented? Or perhaps there’s a change in the ways of working or development
methodology? In any case, it would probably be a mistake to plan a release in July for this particular
project since there has been a lot of recent high risk work that deviates from how the codebase grew
before that date.

Risks Are Relative To The Analysis Period

It’s important to note that your risk profile is always relative to your particular analysis period. That is,
you get a different risk profile if you analyze the complete history of your code versus a short retrospective
analysis. This is by design and most likely to be the information you want.

However, you need to be aware that if you run a Retrospective analysis, you may see more high risk
commits. That just means those commits stand-out compared to the rest of the work you did in that
sprint/iteration; It doesn’t necessarily mean that those commits would be high risk relative to the
complete evolution of your system. To find out, you need to run a full analysis.

4.6 Continuous Integration and Code Review API

4.6.1 CI/CD Integration with CodeScene’s Delta Analysis

CodeScene identifies and prioritizes technical debt, while at the same time uncovering and measuring
social factors of the organization behind the system. The earlier you can react to any potential finding,
the better. That’s why CodeScene offers integration points that let you incorporate the analysis results
into your build pipeline.

The purpose of a Delta Analysis is to:

• Prioritize code reviews based on the risk of the commits.

139

CHAPTER 4. GUIDES

• Specify quality gates for the goals specified on identified hotspots using CodeScene’s Intelligent
Notes.

• Specify quality gates that trigger in case the Code Health of a hotspot declines.

• Get early warnings such a complexity trend increases and detect the absence of expected change
coupling.

Select a Delta Analysis Strategy

CodeScene supports two different strategies for the delta analysis:

1. Full Scan: A Full Scan always fetches the latest version of a file from the repository’s main branch
and use that version as a reference. CodeScene supervises the code health of all files in a change
set or pull request. We do make an exception for really, really large pull requests; if a change set
exceeeds the hardcoded limit of 50 files, then CodeScene automatically reverts to a Hotspot Scan in
order to maintain quick response times. You can override this threshold via environment variables:

• env variable: DELTA_ANALYSIS__LIMIT_DELTA_SCAN_TO_MAX_FILES

• system property: delta.analysis_limit.delta.scan.to.max.files

2. Hotspot Scan: With this strategy, CodeScene limits the delta analysis to files that are identified as
hotspots. This means that the most relevant modules are always checked. Non-hotspots will not
be analysed for code health decline (use the Full Scan for that). The Hotspot Scan is quicker than
the Full Scan.

By default, CodeScene’s uses the Full Scan which is the recommended strategy since it covers all modified
content. The Hotspot Scan is faster and intended for CI/CD gates in a build pipeline that have to execute
quickly while still supervising the specified hotspot goals and quality gates.

You change strategy in the project configuration:

What are the Pre-Requisites for a Delta Analysis?

A Delta Analysis is always relative to a full analysis. CodeScene will use the latest completed analysis
as a baseline for the Delta Analysis.

This is why we recommend that you configure your analysis to run at least once a day. On projects with
more contributors and high commit frequencies you want to schedule CodeScene to run a full analysis
each hour. We’d say that any project with more than 10 commits per day should run the analysis
frequently.

Integrate CodeScene in your Continuous Integration Pipeline

Connect using CodeScene’s REST API

CodeScene provides a REST API that lets you integrate the analysis results in a continuous integration
pipelinei and/or as robot comments in a code review tool like Gerrit.

CodeScene’s REST API provides a special type of analysis called a Delta Analysis. A Delta Analysis is
fast, it usually just takes a few seconds to run, and is used to get early feedback on a pull request or
range of new commits.

Connect to external webhooks

CodeScene’s delta analysis can be connected to some common repository hosting services using webhooks.
All that is required is API credentials (API Token/App Password) authorized to modify webhooks and
pull requests.

140

CHAPTER 4. GUIDES

Fig. 4.111: Configure a delta analysis strategy for your project.

141

CHAPTER 4. GUIDES

CodeScene will install webhooks at the remote service that will trigger a Delta Analysis when a pull
request is created or updated. The results of the Delta Analysis will be visible as a comment on the pull
request.

Meet the Delta Analysis

A Delta Analysis is triggered by a pull request, a range of commits or a single commit; You decide through
the API. Each time you trigger a Delta Analysis, CodeScene calculates the following information:

1. Delivery risk of the suggested change set. The risk classification is relative to the risk profile for your
codebase as described in Risk Analysis (page 137). Use this information to prioritize code reviews and
to decide upon delivery risks.

2. Status of Quality Gates. There are two independent – but related – quality gates. The first and
most important one ensures that none of the goals you have specified via Intelligent Notes (see Manage
Hotspots and Technical Debt with Goals (page 70)) are violated. The second quality gate lets you catch
code that declines in Code Health directly in the CI/CD pipeline.

3. Early detection of Complexity Trend Warnings. CodeScene already provides an early warning in
case the code complexity starts to rise in a Hotspot. Now the delta analysis can catch such complexity
patterns based on the changes in a pull request. That provides a great opportunity to refactor the code
before delivering it to your main branch.

4. Suggests absent change patterns. This analysis identifies change sets where an expected temporal
coupling is absent. If a cluster of files have changed together for a long time they are intimately related.
This warning fires when such a temporal change pattern is broken. Please note that this may be good -
we’ve refactored something - but it may also be a sign of omission and a potential bug. As a consequence,
this warning is based on a self-correcting algorithm; If you keep ignoring the warning it will go away
automatically as the temporal coupling decreases below the thresholds.

Fig. 4.112: A Delta Analysis gives you early warnings, actionable quality gates, and detects high risk changes
(example from Jenkins).

The screenshot in Fig. 4.112 shows an example of a delta analysis result. This information is consumed
and integrated via the REST API for delta analyses that we’ll discuss soon.

Please note that future releases of CodeScene will expand the Delta Analysis capabilities. Our plan is
to provide even more detailed information that helps you get the most out of your time.

Use a Delta Analysis to Save Time in Code Reviews

The main advantage of a delta analysis if that it lets you react to potential problems early. But there’s
a potentially large saving at the other end of the spectrum too; Instead of treating all pull requests as

142

CHAPTER 4. GUIDES

equals, CodeScene’s risk classification lets you prioritize your code reviews and focus your time where
(and when) it’s likely to be needed the most. Code reviewer fatigue is a real thing, so let’s use our review
efforts wisely.

Code review tools like Gerrit lets you select a label. For example, you specify a label that either allows
or blocks the change. In addition you may select a label as an opinion (+1 and -1 in Gerrit).

When you integrate CodeScene with Gerrit, it’s our recommendation that you map CodeScene’s risk
classification to an automated +1 or -1. For example, all commits below the risk category 3 may be +1,
which indicates to the reviewers how much time they need to spend on this review.

In addition, the delta analyses lets you auto-detect files that seem to degrade in quality through issues
introduced in the current commit or pull request. This is done by calculating code biomarkers (see
Explore your Code’s Biomarkers (page 65)), which are then supervised for their trend as shown in Fig.
4.113.

Fig. 4.113: A Delta Analysis detects degrading Code Health.

CodeScene’s delta analysis works in the other direction too; It’s not only about spotting problems. If
you enable the quality gates and work pro-actively with Intelligent Notes in CodeScene, then you can
allocate less time on the features with 1) low risk, and 2) passing gates, as shown in Fig. 4.114.

Fig. 4.114: Spend less time on reviewing code with low risk and passing quality gates.

Keep up the Good

CodeScene also detects hotspots that improve their code health. This information is included as a
positive reinforcement intended to show the effect of the current changeset on the overall code health.
Fig. 4.115 shows an example where a hotspot is successfully refactored – an occasion to celebrate!

Notify the Code Owners on Failed Quality Gates

As discussed in Knowledge Distribution (page 119), CodeScene parses and includes code ownership
information when present. If you have this feature enabled, then CodeScene will include a mention of
the code owners should a quality gate fail. You see an example in Fig. 4.116.

143

CHAPTER 4. GUIDES

Fig. 4.115: Measure code improvements as part of the CI/CD pipeline to reinforce a positive trend.

Fig. 4.116: CodeScene notifies code owners when a quality gate fails.

144

CHAPTER 4. GUIDES

The REST API for Delta Analyses

CodeScene lets you create a special Bot user role intended to consume the REST API. Login as admin-
istrator and create a Bot user for each of your integration points as illustrated in Fig. 4.117

Fig. 4.117: Configure a Bot user for each of your integration points.

You trigger a Delta Analysis by POSTing a request to the REST endpoint specified in your analysis
configuration as illustrated in Fig. 4.118.

Fig. 4.118: Your analysis configuration specifies the REST endpoint to trigger a delta analysis.

The payload of the POST request specifies two required fields:

1. commits: This is a JSON array containing one or more commits. CodeScene will run a delta
analysis on all these commits by considering them as a single unit of work.

2. repository: Specifies the Git repository where the commits that you want to analyse are located.
You need to specify the repository name since an analysis project may contain multiple Git repos-
itories.

Other optional parameters:

• coupling_threshold_percent: Specifies minimal temporal coupling for the “Absence of Expected
Change” warning. Default is 80 (%).

• use_biomarkers: Instructs CodeScene to look for degrading code health, and enables reporting of
the quality gates state. Note that this requires that the biomarkers are enabled for the analysis
project.

145

CHAPTER 4. GUIDES

Let’s say that we have created an analysis project by specifying a Git remote:

https://github.com/PHPOffice/PhpSpreadsheet.git

In this case, the repository payload parameter is PhpSpreadsheet (strip the .git exten-
sion). If we want to simulate a delta analysis of the commit designated by the hash
99e5a8e919e1f7b83371a8a586fd6d7875f63583 we issue the following request:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet"}' http://
→˓localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -H "content-type:␣
→˓application/json"

You can also specify a custom temporal coupling threshold:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet", "coupling_threshold_
→˓percent": 50}' http://localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -
→˓H "content-type: application/json"

Finally, you can enable biomarkers to detect potential code quality problems early:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet", "use_biomarkers":␣
→˓true}' http://localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -H
→˓"content-type: application/json"

The example assumes that 1) CodeScene runs on localhost and 2) we have configured a user named
CodeReview.

Notes to Windows Users: The curl syntax above won’t work on Windows unless you escape the payload
properly. We recommend that you use Fiddler instead of curl if you want to test the API on Windows.

Once you’ve issued the POST request above, CodeScene’s Delta Analysis will respond with the following
JSON document:

{"version":"1",
"url":"/projects/64/delta-analysis/75686456d695d60d99a7cd73302f83606c8a8efc",
"view":"/64/delta-analysis/view/75686456d695d60d99a7cd73302f83606c8a8efc",
"result":{"risk":3,

"description":"The change is low risk as it touches less code than your typical␣
→˓change set",

"improvements":["Connector.java improves its code health from 5.6 -> 6.2"],
"quality-gates":{"degrades-in-code-health":false,

"violates-goal":false},
"warnings":[]}}

The parameters in the response carry the following meaning:

• version: This is the version of the REST API and will change in future versions of CodeScene.

• url: This URL points to the Delta Analysis resource in CodeScene. You can fetch it with an HTTP
GET request at any time and it will return the same result document.

• view: Points to the page in CodeScene that contains the graphical representation of the result as
illustrated in Fig. 4.112.

• result: This JSON object contains four fields:

– risk is the risk classification of the commit(s), range 1-10.

– description is a human readable interpretation of the risk calculated by CodeScene’s
machine learning algorithms.

– improvements is a positive reinforcement that shows code that improves its health.

– quality-gates specifies the state of the two gates that can, optionally, be checked and
enforced in the requesting build pipeline.

146

https://github.com/PHPOffice/PhpSpreadsheet.git
http://www.telerik.com/fiddler

CHAPTER 4. GUIDES

– warnings specify any early warnings like Complexity Trend increases. In this case it’s a
low risk commit without any early warning.

Now, let’s look at a more complex result. In this case a new developer has made a modification to one
of the top Hotspots on a separate branch. The Delta Analysis reports the following results:

{"version":"1",
"url":"/projects/2/delta-analysis/43cc8a146cc0957f2fcb4b09ae3dee71d5a5cf2e",
"view":"/2/delta-analysis/view/43cc8a146cc0957f2fcb4b09ae3dee71d5a5cf2e",
"result":{"risk":10,

"description":"The change is high risk as it is a more wide-spread
change (1232 lines of code in 32 files) than your
typical change patterns.
The risk increases as the author has somewhat lower
experience in this repository.",

"improvements":[],
"quality-gates":{"degrades-in-code-health":false,

"violates-goal":false},
"warnings":[
{"category":"Modifies Hotspot",
"details":["mvc/src/Microsoft.AspNetCore.Mvc.TagHelpers/LinkTagHelper.cs"]},

{"category":"Absence of Expected Change Pattern",
"details":["mvc/src/Microsoft.AspNetCore.Mvc.TagHelpers/ScriptTagHelper.cs"]}]}}

We see that CodeScene reports a high risk of 10. We also note that CodeScene calls our attention to the
modified Hotspot. We use this information to review the change more carefully. Finally we note that
CodeScene detects the absence of an expected change pattern. In this codebase, the LinkTagHelper.cs
is usually changed together with the ScriptTagHelper.cs file. Since that wasn’t the case here, CodeScene
informs us about the omission so that we can investigate it and catch a potential bug early.

Finally, let’s see how a failed code quality gate looks:

{"version":"1",
"url":"/projects/2/delta-analysis/43cc8a146cc0957f2fcb4b09ae3dee71d5a5cf2e",
"view":"/2/delta-analysis/view/43cc8a146cc0957f2fcb4b09ae3dee71d5a5cf2e",
"result":{"risk":10,

"description":"The change is high risk as it is a more wide-spread
change (1232 lines of code in 32 files) than your
typical change patterns.
The risk increases as the author has somewhat lower
experience in this repository.",

"improvements":[],
"quality-gates":{"degrades-in-code-health":true,

"violates-goal":true},
"code-owners-for-quality-gates":["@TheTester" "@TheMicroManager"],
"warnings":[
{"category":"Degrades in Code Health",
"details":["ViewComponentResultTest.cs degrades from a Code Health of 10.0 -> 9.0

→˓"
"ControllerActionInvokerTest.cs degrades from a Code Health of 5.0 ->␣

→˓4.7"]},
{"category":"Violates Goals",
"details": ["Hotspots marked supervise, ControllerActionInvokerTest.cs, degrades␣

→˓from a Code Health of 5.0 -> 4.67"]}]}}

The failed quality gates are indicated in the quality-gates field. We also note that CodeScene includes
the code-owners-for-quality-gates field, which specifies the two owners – as read from a CODEOWNERS
file – that are responsible for the code that failed the quality gates.

147

CHAPTER 4. GUIDES

Delta Analysis in Offline Mode

Delta analysis is triggered via an API call and thus requires authentication. Since CodeScene checks the
license on a remote license server with every authentication request, the delta analysis API call will fail
if CodeScene can’t reach the license server. If you don’t have an Internet connection or you don’t want
to let CodeScene access the Internet, you need to specify offline-mode parameter:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet"}' http://
→˓localhost:3003/projects/64/delta-analysis?offline-mode=offline -u 'CodeReview:MyPassword' -H
→˓"content-type: application/json"

Please note that there is a new offline-mode=offline parameter in the query string.

If you always run CodeScene in offline mode, you can also turn on Global Offline Mode in the configura-
tion. With global offline mode, you don’t have to append offline-mode=offline parameter to your delta
analysis API URLs.

Read more about the limitations and usage in Offline Mode (page 12) documentation.

4.6.2 Branch Analyses

Many organizations are transitioning to short-lived feature branches and employ practices like continuous
integration/delivery. To work in practice, branches have to be kept short-lived.

CodeScene introduces a new suite of analyses that measure branching activity, different lead times, and
risks. This is information you can use to get insights into your CI/CD process, or to reason about
delivery and development risks.

Note: You need to have at least version 2.15 of Git in order to enable the branch analyses.

Meet the Branch Measures

CodeScene presents a summary of the branch statistics on its dashboard as shown in Fig. 4.119.

Fig. 4.119: An overview of the branch measures.

148

CHAPTER 4. GUIDES

Branch Duration
The calendar time from the first commit of a branch to the latest commit of the branch. For
example, if the first commit on the feature branch task-52-support-cherenkov-drive-mode is made
at 7am on Dec 1st, and the second commit is done at 10am on the same day, the branch duration
at that point is three hours. High values indicate long-lived branches, which can indicate high risk.

Lead Time to Merge
The calendar time between when the last commit of the branch is made, and when the branch is
merged. It can be caused by waiting for code reviews or other tasks required before merging.

Contributing Authors
The number of unique authors that have contributed to a branch. A high number could indicate
a complicated feature, or that it contains many features from different authors.

By default, CodeScene calculates statistics for all branches that have been worked on during the past
two months.

Note: you can configure the time span for active branches as well as filter out specific branch
names (e.g. long-lived release branches) in the project configuration.

Use this high-level overview to ensure you have a short Branch Duration and a short Lead Time to Merge
for each branch. When a branch lives for too long, it puts your delivery at risk of merge conflicts and
unexpected feature interactions.

As you see in the preceding figure, CodeScene also auto-detects early warnings for long lived branches.
Use this information to either:

• Re-plan the scope: Sometimes it’s just too much work in a single feature. Identifying a smaller
feature set that you can deliver faster is one way to shorten the lead times and minimize risk.

• Prioritize verification activities: Use the early warning to focus extra code reviews and tests on the
highlighted branches.

If you click on the branch tile on the dashboard, CodeScene displays a detailed view of each branch as
shown in Fig. 4.120.

Fig. 4.120: A detailed analysis of the work on each branch.

This information lets you identify early signs of trouble, such as long-lived branches, or branches that
become congested by attracting contributions from several different authors.

Note that the thresholds used to trigger the early warnings are automatically deduced from your normal
branching strategy; CodeScene warns when a branch deviates from your normal ways of working. As
such, the warnings are relative to the patterns in your codebase.

You can see another example of such deviations from normal ways of working in Fig. 4.120: One of
the branches has contributions from 5 different developers, which might put you at risk for parallel
development. It’s also a sign that there’s too much development activity on that branch, so you could
use this information to investigate the scope.

149

CHAPTER 4. GUIDES

Detect Delivery Risks

CodeScene predicts the delivery risk of each active branch (i.e. unmerged work) as shown in Fig. 4.121.

Fig. 4.121: Predict the delivery risk of each branch.

This risk classification predicts the risk for defects, and is given on the scale 1-10 where 10 is the highest
risk.

Use this information to plan preventive measures such as extra code reviews and tests. You can also
setup a separate CodeScene analysis and just focus on the work being done on the branch. In extreme
cases you may chose to postpone the merge of such high-risk branches if you’re close to a critical deadline.

Repo-based Projects

Branch Analyses are not currently supported in Repo-based projects. This is because Repo does not
automatically check out a reference branch. For more on using Repo in CodeScene, see Working with
Repo (page 177).

4.7 Delivery Performance

4.7.1 Measure Delivery Performance with Business Metrics

Software development productivity is notoriously hard to measure. At the same time, it’s important
to visualize the business impact of any technical debt that CodeScene detects or to measure the effects
of changed ways of working in a business context. For that purpose, CodeScene includes a Delivery
Performance module that adds business metrics on top of our engineering metrics.

Putting Engineering Metrics into a Business Context

The Delivery Performance module puts CodeScene’s technical and organizational metrics into a business
context. This CodeScene feature addresses three important use cases:

• Put code metrics into a business context: To a non-technical stakeholder, terms like code
complexity and technical debt are opaque and non-tangible. By showing the business impact of a
declining code health trend, the engineering organization help non-technical stakeholders balance
the trade-off between long- and short-term goals.

Example: Can we continue to churn out new features, or is it time to take a step back and invest
in improved code quality?

• Bride the communication gap between engineering and business: Despite an increased
focus on cross-functional collaboration and powerful organizational strategies like DevOps, most
software projects still face a communication gap that often results in missed deadlines and low
efficiency. To key to sucessful delivery is to ensure that all stakeholders – both engineering and
business – have the same view of what the system looks like and how healthy it is. We need
situational awareness.

150

CHAPTER 4. GUIDES

Fig. 4.122: CodeScene puts its technical and organizational metrics into a business context.

Example: Developers know if we take on excess technical debt, but as a development team rarely
own their time. Business do. With the Delivery Performance metrics, we can shift the discussion
from the technical impact (“oh, our code has declined in health”) to discuss the business impact:
“our time to market has increased with 20%, and a likely reason is the measureable decline in code
health”.

• Feedback on technical and organizational change: It’s valuable to illustrate the effects of
larger refactorings. The engineering organization gets immediate feedback by Integrate CodeScene
in your CI/CD Pipeline (page 30), and using the Delivery Performance, management can now get
the same feedback from a business perspective.

Example: A critical feature is re-designed as a response to increasing maintenance costs. Use the
Delivery Performance to show that this investment paid off in terms of less unplanned work (see
the graphs above for a real-world example).

• Increase capacity by optimizing the bottleneck: Most aspects of software development are
opaque. As such, it’s way to easy to act on increasing lead times by throwing more people at the
problem, taking on excess coordination costs in the process. Acting on CodeScene’s technical and
organizational metrics often open a different set of possibilities; what if we paid down the technical
debt in the prioritized hotspots? What if we re-aligned our development teams with the way the
system evolves? What if we automate the integration tests for our sub-system hotspots? Using
the Delivery Performance metrics, you can measure the impact on throughput and cycle times in
real time.

Example: Instead of hiring more consultants to staff the development teams, look to reduce the
amount of unplanned work to gain free – and existing – capacity to work on new features.

Defining the Metrics: Delivery Performance Measures Lead Times and Cost Trends

CodeScene’s Delivery Performance module focuses on throughput and lead time metrics that are known to
correlate with business values like time to market, customer satisfaction, and profitability (see Accelerate:
The Science of Lean Software and DevOps by Forsgren, Humble, and Kim for a deeper read on this topic).
We also focus on highlighting the costs and trends in unplanned work such as bug fixes and re-work.

Like most CodeScene metrics, the emphasize is on trends over absolute values. That is, it’s more
important that you – as an organization – move in the desired direction than to compare your performance
against any other entity in a different context. Let’s look at an example in Fig. 4.123.

151

CHAPTER 4. GUIDES

Fig. 4.123: CodeScene calculates trends based on the periodic releases.

The metrics are measured as follows:

• Lead Time for Changes: The lead time starts when a Jira issue enters an in progress/development
state, and ends when the feature is included in a release. This is typically the most important
metrics since lead times correlate with time to market.

• Defects: It would be trivial to shorten lead times if we compromised quality. Hence, we measure
the number of defects fixed in each release. An increase might signal positive aspects like improved
testing, or – more frequently – a degradation in external quality.

• Cycle Time from Change to Release: This cycle time starts when a commit is made until the
commit is included in a release. A long cycle time from change to release indicates a bottleneck in
the delivery process such as in-efficent code reviews, over-reliance on manual verification, or simply
to in-frequent releases.

• Lead Time for Bug fixes: Measures the time from opening a bug/defect in Jira until the bug fix
is included in a release. A long lead-time for bug fixes might mean that users have to wait for a
response to issues, which might lead to less customer satisfaction.

• Batch Size: Measures the number of Jira issues included in a release. Efficient delivery is much
about minimizing the amount of parallel work and releasing new features in small batches; the
larger our releases, the more expensive it is to debug and isolate potential failures.

Throughput: Measure the Costs of Planned vs Unplanned Work

In “The Phoenix Project” – a wonderful book and favourite of the CodeScene team – Gene Kim describes
unplanned work as “the silent killer of IT organizations”. Unplanned work steals capacity and leads to
inherently unpredictable delivery that turns an organization into a reactive rather than pro-active entity.
Minimizing unplanned work is paramount to any IT organization.

For that purpose, CodeScene’s Delivery Performance module provides a categorization of those develop-
ment costs into Planned and Unplanned work:

The categorization is performed based on your configuration of the project managegement integration.
Typically, everything related to features or planned re-work is categorized as Planned, whereas bugs,
re-work, and service interruptions are Unplanned.

152

CHAPTER 4. GUIDES

Fig. 4.124: Inspect how the development capacity is spent; do we spend our time mainly on Planned or Unplanned
work?

The amount of Unplanned work indicates the unrealized potential that can be optimized
in an organization’s delivery efficiency; minimizing the amount of Unplanned work leads to
more predictable progress and delivery pace.

The costs for Planned vs Unplanned work are measured using the configured cost model and unit, e.g.
hours, issues, points, described in Integrate Costs and Issues into CodeScene (Jira, Trello, Azure DevOps
and GitHub Issues) (page 32).

Detailed Delivery Performance Graphs

All lead times and quality trends are complemented with interactive graphs that let you detect outliers
and inspect specific releases.

The graphs are complemented with a trend showing the size of the development team over time. The
rationale for including the scale of the team is that declining delivery performance trends often indicate
on-boarding costs and/or increased communication and coordination needs (see Delivery Effectiveness
by Organizational Trends (page 110) for suggested follow-up analyses).

Interpret the Graphs

Here’s an example on a dramatic increase in lead times that indicate a delivery issue:

The previous graph should be an immediate call to arms to uncover the potential bottlenecks in the prod-
uct development. For that purpose, turn to CodeScene’s other metrics for organizations and technical
debt. It’s also worth pointing out that the batch size has been increasing significantly in the preceding
graph; the popups show that the last release is almost 3 times as large as the previous release.

We can get more information on the batch size trends in the next graph:

Contrast the preceding trend with how the batch size looks in an organization that practices continuous
delivery:

153

CHAPTER 4. GUIDES

Fig. 4.125: Increasing lead times might indicate either organizational issues, planning problems, or growing
technical debt.

Fig. 4.126: Increasing batch sizes are an indication that too much work is included in each release.

154

CHAPTER 4. GUIDES

Fig. 4.127: In Continuous Delivery, each feature is released when it’s done.

Small batch sizes has a large impact on delivery performance; the smaller releases we do, the easier it is
to track down and isolate any errors or failures.

Use Predictive Analytics as Early Warnings

CodeScene’s delivery performance module also includes a set of predictive analytics that provide feedback
on the work in progress. That is, CodeScene calculates metrics on the yet to be released commits and
issues as shown in Fig. 4.128.

Fig. 4.128: Use the predictions on the upcoming release as early warnings.

These predictions are based on patterns in how you – as an organization – has worked so far; that’s
how CodeScene knows that according to your typical ways of working, you should have released 9 days
ago. Use such feedback as an indication that it might be time to cut the scope and wrap up the ongoing
release.

The predictions on ongoing work serve as visual reminders on the importance of maintaining short lead
times and to limit work in progress.

155

CHAPTER 4. GUIDES

Delivery Performance Summary and Repository Specific Drill-Down

CodeScene generates a Summary view of the delivery performance for projects that include multiple Git
repositories. The purpose of the summary is to identify the bottleneck repository in the delivery chain.

From the Summary view, you can then drill into a specific repository to view its metrics:

Fig. 4.129: Drill down into a specific repository to view its delivery performance metrics.

Pre-Requisites for the Delivery Performance Metrics

The delivery performance metrics require the following data:

• CodeScene integration with project management tools, see Integrate Costs and Issues into Code-
Scene (Jira, Trello, Azure DevOps and GitHub Issues) (page 32).

• Commit metadata data is used to calculate the scope, batch sizes, and cycle times. As such, each
commit has to be tagged with its coresponding issue.

CodeScene supports two different strategies for calculating delivery performance, based on how your
release flow works:

1. Calculate trends based on state transitions captured in a project management tool
(e.g. Jira, Trello). This is the default option since it works with most organization’s existing
workflows. Using this option, the delivery performance data is shown as periodic weekly trends.

2. Identify releases via Git tags. The second option requires that you tag all releases in Git. The
advantage of this approach is that CodeScene can now uniquely identify each release and present
the delivery performance data on a per release basis.

The Delivery Performance module is currently in beta status, which means it has to be enabled by a
CodeScene administrator as shown in

Motivation: Turning a Crisis into Success

CodeScene’s delivery performance module was built to close the gap between the engineering organization
and the business side of IT. We consider that crucial; developers are the ones that act on technical debt
and quality issues, but the business decides what to focus on and how the organization looks. Making
sure that both business and engineering share the same view of an evolving system and have effective
feedback loops is paramount to success. We capture an example in the following story.

The previous two graphs are from a real-world IT project. The project had gotten a good start, and now
the organization decided to scale-up with more developers. However, the existing collaborative strategies

156

CHAPTER 4. GUIDES

Fig. 4.130: The default strategy considers an issue “released” when it transitions to a specific state in a project
management tool.

Fig. 4.131: A more advanced and precise alternative is to use Git tags to identify releases.

Fig. 4.132: Enable the Delivery Performance module in the global CodeScene configuration.

157

CHAPTER 4. GUIDES

Fig. 4.133: CodeScene puts its technical and organizational metrics into a business context.

were adapted for a small and tight-knit team, and didn’t scale well. As a consequence, the organization
soon noticed a set of symptoms indicating deeper problems. The most visible symptom was a surge in
the number of support issues. Maybe that could be resolved by hiring more testers or even expand with
a first line support?

Unfortunately the problems soon went deeper. After a few fatal sprints where little progress was made,
the organization decided to hire even more developers since it had to bring out long awaited features on
the market. Fortunately, before making that choice, a root cause analysis was performed using an earlier
version of CodeScene. The outcomes were:

• The additional engineering people they wanted to hire were already on-board. They were just busy
reacting to unplanned work due to an increase in the defect rate.

• The high amount of unplanned work also meant that the most experienced people were busy doing
critical ad-hoc bug fixes rather that driving the product forward or supporting the new team
members. This explained why it had become so hard to plan for new features too.

• The overall throughput declined. Not only do we see a shift towards more unplanned work in the
graphs above; they also show that the organization delivers less and less. Part of this efficiency
loss was due to the constant context switches required to act on critical support issues. Another
explanation was the increased coordination and the declining code health visible in the graph.

• Speaking of code, a likely explanation for the negative trends was found in CodeScene’s code health
trends (see Code Health – How easy is your code to maintain and evolve? (page 64)). There was
a clear decline, starting shortly after the organization had scaled-up. The numbers were still not
in the critical range, but there was a clear and problematic downwards trend, particularly in the
feature areas responsible for most of the support issues.

Based on these findings, the organization acted by re-shaping their engineering and collaborative strate-
gies. The product manager also decided to invest time into paying down the technical debt in the
prioritized hotspots. Since the hotspots only made up a small part of the overall codebase, this effort
gave a real effect over just two sprints. To ensure that the hotspots staid healthy, the organization also
enabled CodeScene’s quality gates. By mesuring the delivery performance, management and engineering
could see that their actions had a real effect.

No tool will ever save an organization, but situational awareness might.

Of course, no tool will ever save an organization, but situational awareness might. It’s key. So use the
delivery performance measures to shine a light on your IT performance so that you can stay on top of
the game.

158

CHAPTER 4. GUIDES

4.8 Simulations

4.8.1 Team Planning with the On- and Off-Boarding Simulation

CodeScene’s existing knowledge loss analysis provides after the fact information. While that information
is useful as input to planning and risk management, it is usually more important to get data we can act
upon pro-actively.

For this purpose, CodeScene comes with a simulation module that lets you explore the effects of a planned
off-boarding while the developers are still aboard. This gives you the opportunity to identify off-boarding
risks and areas of the code in need of a new main developer. Let’s see how we use the simulation.

Access the Off-Boarding Simulation

The off-boarding simulation is accessible from each analysis view in a separate module, as shown in Fig.
4.134.

Fig. 4.134: Access the off-boarding simulator in the SIMULATIONS module.

The former contributors in your codebase, the ones configured as ex-developers in your project, are
visualized using the black color. The simulation also lists all known developers. To simulate the impact
of an off-boarding, select one or more developers from that list as shown in Fig. 4.135. The areas of the
code affected by the off-boarding are then highlighted in red. Note that you can search and filter in the
developer list, a feature that’s useful in projects with many contributors.

Detect Off-Boarding risks

CodeScene auto-detects high risk areas in the off-boarding simulation. That is, if a major hotspot is in the
head of a developer who might leave, we consider that an increased off-boarding risk. The off-boarding
risks are highlighted as illustrated in Fig. 4.136.

Act on the Off-Boarding Information

The off-boarding simulation lets you identify the areas of the system where most code has been written by
developers who might become former contributors in the future. This might happen for several reasons:

159

CHAPTER 4. GUIDES

Fig. 4.135: Select one or more developers to simulate the off-boarding effect.

Fig. 4.136: CodeScene auto-detects off-boarding risks.

160

CHAPTER 4. GUIDES

a developer or contractor could leave the organization, or maybe a team of developers are re-assigned to
a different project.

In both situations you typically have a period of time when the soon to be former contributors are still
around to support the on-boarding of new people. Using the simulation, you can:

• Guide on-boarding: If you identify a high-risk area where you will lose system mastery, then use
this information to on-board a new developer in that part of the code.

• Support planning and priorities: If the simulation shows that the organization will lose active
knowledge of entire components or sub-systems, then you might have to re-prioritize or re-plan
features that require extensions of those components. Typically, this means scheduling additional
time for learning.

• Look for upcoming technical gaps: Some codebases have a high degree of technical sprawl. This
means that an off-boarding could lead to a situation where you have code implemented in a pro-
gramming language that none of the teams master. As such, you want to compare the off-boarding
data with CodeScene’s analysis of Technical Sprawl. The outcome of this analysis should influence
training, hiring, and rewrite decisions.

In particular, look for components that are entirely in the heads of former contributors. That’s where
the largest risk is.

Disable the Off-Boarding Simulation

The off-boarding simulation isn’t intended for performance evaluations. In fact, we strongly advice
against that usage and it might even be illegal in certain jurisdictions. With these aspects in mind,
you can disable the simulation if you login as an administrator and go to the global configuration in
CodeScene as shown in Fig. 4.137.

Fig. 4.137: The off-boarding simulation can be disabled in the global configuration.

4.9 Miscellaneous

4.9.1 Notifications

CodeScene comes with a flexible notification system which you can use to receive notification messages
when a CodeScene analysis is run.

You can see an example of a Slack notification message in Fig. ??.

Default notifications start with a project name and the analysis results link. Then comes the list of
analysis warnings (if any).

You can customize the content of notification messages in the CodeScene configuration.

161

CHAPTER 4. GUIDES

Generic Configuration

CodeScene administrators can customize notifications in the global configuration on the Notifications
tab.

Here’s an example:

CodeScene host URL must be configured properly if you want to receive proper links to your analyses’
results. Make sure that the protocol, the host and the port are all correct.

There are two subsections in the Notifications Configuration:

1. Notification Templates - generic notification templates for the actual message that will be sent

2. Slack Notifications - Slack-specific configuration settings

Notification Templates

These are generic notification templates which define the content of notification messages.

You can see a typical example of a notification template in Fig. ??.

• Analysis result is a special type of notification template which is only used to add the analysis
result link to all other notifications.

• Analysis success is a simple notification that is sent whenever an analysis is run - it’s turned off by
default to avoid noisy notifications.

• Analysis error is only sent when an analysis fails with an unrecoverable error.

• Rising Hotspot warning is an example of a notification which is sent when your analysis finishes
with “Rising Hotspot” warning.

Template Variables

You can use several variables in your notification templates. You use them by wrapping them with
double curly braces, e.g. {{notification/display-name}}.

The following variables are available:

• project-name - the name of the project

• project-url - an absolute URL to the project details; can be useful when the analysis fails

• analysis-result-url - an absolute URL to the project analysis results

• notification/display-name - a display name of the notification, e.g. Rising Hotpost warning; it’s
mostly useful for warnings and corresponds to the labels used for notification templates in config-
uration.

• notification/description - a short description of each notification; again, mostly useful for warnings
and visible under the notification labels in configuration.

162

CHAPTER 4. GUIDES

163

CHAPTER 4. GUIDES

Slack Notifications

Slack Notifications configuration are separate from the generic notification settings.

They are hidden by default so you need to enable them first:

Slack Application Setup

Before starting, you need to set up your Slack application. Click the Create a Slack app button and fill
in the details. When the application is created, select OAuth & Permissions in the left panel and pick
the chat:write:bot permission in the Select Permissions Scopes combo box. Save your changes and then
click the Install App to Workspace button at the top of the page:

After the Slack application is installed you should be able to get your access token:

Copy and paste this token into the CodeScene Slack configuration.

Slack Notifications Config

Slack Notifications configuration comes down to the two important things:

• Notification recipient - the name of the channel (of the user) where the notifications should be sent

• Slack API token - the access token created in the previous step

Note: for Notification recipient, use the name of the Slack channel, as is, e.g. codescene-slack. If you
want to send notifications to the specific user, then prepend @ to the username, .g. @juraj.martinka for
sending notifications to the slack user juraj.martinka.

You can see a sample configuration in Fig. ??.

Once you have everything configured click Save Slack Notifications Settings.

You are ready to run an analysis and recieve your first notification!

164

https://api.slack.com/slack-apps

CHAPTER 4. GUIDES

165

CHAPTER 4. GUIDES

166

CHAPTER 4. GUIDES

167

Chapter 5

Configuration

5.1 Project Configuration

5.1.1 Specify the Git Repository to Analyze

Your first step is to tell CodeScene where your code is. There are six different ways of doing that:

1. Specify the paths to your local, physical Git repository, which has to be on the same machine as
CodeScene runs on. The path you specify has to be to the root folder of your repository (i.e. the folder
that contains your .git folder).

2. Let CodeScene scan a folder on your file system for repositories to analyze. You’ll be prompted
with the results and are free to ignore the repositories you want to exclude. This option is useful in a
multi-repository project.

3. Specify the URLs to Git remotes. CodeScene supports the protocols specified by Git clone: ssh,
http, and git. CodeScene will clone the remotes to a local folder that you specify in the configuration as
illustrated in Fig. 5.1. Note that CodeScene will re-use a local Git repository if there’s an existing clone
on the path you specify. Also note that you need to have a an ssh-key that lets the CodeScene (system)
user access your remote repositories.

4. Clone an existing analysis configuration. CodeScene copies all your configuration options – filters,
repository paths, exclusions, teams, ex-developer configuration, etc – to a new project. From here those
two projects (the original and the clone) are completely independent and changes to one of them do not
affect the other.

Finally, note that you cannot mix local repository paths with URLs to remote Git repositories in a single
analysis project.

5. Use Google’s Repo tool. You provide CodeScene with the URL to the repository containing your
project’s manifest file. CodeScene will then initialize a local directory as a Repo project and clone all of
your Git repositories.

With a Repo-based project, you can switch between branches of the manifest to check out different
versions of your project. Branch selection inside the project’s Git repositories can be controlled through
the manifest file.

6. Import a project configuration that has been created by exporting the configuration of a project from
this or another CodeScene instance.

5.1.2 Analyze Projects organized in Multiple Git Repositories

There’s a recent trend towards organizing the source code of larger systems in multiple Git repositories.
For example, you may have the code for your user interface in one repository, the code for your service
layer in another repository and perhaps even a Git repository dedicated to your back end mechanism.

168

CHAPTER 5. CONFIGURATION

Fig. 5.1: Let CodeScene clone your Git repositories through their URL.

Another typical example is Microservices where each service is deployed according to its own life cycle.
In that case, organizations often chose to use one Git repository per service.

CodeScene supports an analysis of multiple repositories at once. All you have to do is to specify the
paths to them:

Fig. 5.2: Configuration of multiple repositories.

The screenshot above shows three repositories that belong to the same product. During an analysis,
CodeScene will analyze the evolution of the code in all those repositories as though they were in the same
physical Git repository.

You can specify as many repositories as you want and remove one at any time (just erase the text in
that box). However, a word of warning: do NOT attempt to analyze unrelated repositories in the same
configuration. First of all it’s a breach of the license agreement. Worse, you won’t get useful results since
many of the basic metrics, like Hotspots, are relative metrics.

169

CHAPTER 5. CONFIGURATION

5.1.3 Auto-Import Repository Paths

Specifying one or two repositories by hand is straightforward. However, some systems consists of hundreds
of repositories. In that case you want to use the auto-import feature.

The auto-import feature lets you specify a root path to where your repositories are located. Here’s what
it looks like:

Fig. 5.3: Automate the import of multiple repositories.

CodeScene will scan the path you provide to discover any Git repositories. The discovered Git repositories
are presented in a list. Note that you can add additional repositories manually or remove the once you
want to exclude:

Fig. 5.4: The result of auto importing multiple repositories.

From here you just press Continue to proceed with the configuration of your analysis. The rest of the
workflow is identical to the case where you specify repositories manually.

170

CHAPTER 5. CONFIGURATION

5.1.4 Tune the House-Keeping Options for Analysis Results

CodeScene is designed to run continuously to monitor your system. That also means you will accumulate
lots of historic analysis results that occupy space on your host machine.

CodeScene lets you specify a house-keeping strategy that automatically cleans out old historic results,
as illustrated in Fig. 5.5.

Fig. 5.5: Specify how much history you want to keep.

5.1.5 Measure Temporal Coupling across Multiple Repositories

The normal temporal coupling metric considers two files coupled if they tend to change in the same
commits. This won’t work if your codebase is split across multiple repositories. Instead, you want
to aggregate individual commits into logical commits. CodeScene supports two different strategies for
aggregating commits:

By Author and Time
When you specify this option, the tool will consider all commits by the same author on the same
day as a single, logical commit. This option is a heuristic that works well in the absence of a Ticket
ID in your data.

By custom Ticket ID
This option uses an identifier in your commit headers. All commits that refer to the same identifier
will be considered one logical commit.

The second option, By custom Ticket ID, is the preferred method. Fig. 5.6 shows the options in the
repository configuration section Temporal Coupling.

To aggregate by custom Ticket ID, you need specify a Ticket ID Pattern, in the Ticket ID Mapping
section (see Fig. 5.7). The pattern is used to extract the Ticket ID from the commit message. The
example pattern in Fig. 5.7 will extract all identifiers that start with the text ISSUE- followed by at least
one digit. For example, the commit message ISSUE-42 will result in 42 as the extracted Ticket ID.

Note that CodeScene will still calculate normal temporal coupling on a single commit basis. You want
that in order to spot unexpected dependencies between files in the same repository. The temporal
coupling results for the logical commits discussed above are presented in a separate analysis view.

171

CHAPTER 5. CONFIGURATION

Fig. 5.6: There are two available strategies for aggregating commits.

Fig. 5.7: Configure a pattern to extract a Ticket ID.

5.1.6 Temporal Coupling Exclusion Filters

You might have files that you expect to be temporally coupled, for example tests and the corresponding
units under test, or matching .c and .h files. To exclude these coupling from visualization by default, go
to the “Temporal Coupling” section of the project configuration and add “Temporal Coupling Filters”
for the patterns you want to exclude, as shown in Fig. 5.8.

Fig. 5.8: Configure temporal coupling filters for expected file couplings.

Each filter has a name, that can be anything you like, and patterns for coupled file paths. The patterns
are a regular expressions. When a pair of coupled files match the patterns, in either direction, they are
excluded by the filter.

All filters are tried in sequence, and if any filter hits a coupled pair, the pair is excluded. Some useful
examples of patterns are:

Pattern (File 1) Pattern (File 2) Description
.+\.(?
:c|cc|cpp|cxx)

.+\.(?
:h|hh|hxx)

C/C++ includes, e.g. gc.cpp and util.h

.+\/(.+)\.java .+\/(.+)Impl\.
java

Java “Impl” pairs, e.g. Thing.java and ThingImpl.
java

.+\/(.+)\.cs .+\/I(.+)\.cs C# interface pairs, e.g. IComponent.cs and
Component.cs

.*\/(?:(?!test).
)+\.py

.*\/test_.+\.py Python files and tests, e.g. foo/a.py and tests/
test_a.py

If any of the patterns have capturing groups, both matches must generate the same number of captures,

172

CHAPTER 5. CONFIGURATION

with equal values, to trigger the filter. Note that non-capturing groups and negative look-ahead in regular
expressions can be useful if you want to write advanced filters, and only trigger filters on corresponding
files in corresponding directories.

5.1.7 Linking to an External Ticket System

If you have a Ticket ID Pattern configured, and a way to deep-link to tickets by the matched identifiers,
you can configure a Ticket URI Template to enable links in analysis views. That way you will be able to
quickly navigate from Code Churn by Task to the external ticket system, and view more details there.

The Ticket URI Template is based on the URI Template format (RFC 6570), with support for the single
expression {ticket-id}. The matched ticket value, i.e. the captured value of the regular expression
group, is used as {ticket-id} for hyperlinks. For example, if your Ticket ID Pattern is #(\d+), and
your Ticket URI Template is https://example.com/tickets/{ticket-id}, a commit containing the
string #1234 will result in a hyperlink to https://example.com/tickets/1234.

Some useful examples of Ticket ID Patterns and Ticket Template URIs are:

• GitHub: #(\d+) and https://github.com/your-org/your-project/issues/{ticket-id}

• JIRA: (\[A-Z]{2,}-\d+) and https://example.com/jira/browse/{ticket-id}

• Trello (Card Numbers): CARD-(\d+) and https://trello.com/search?q={ticket-id}

• Trello (Card Short IDs): CARD-(.+) and https://trello.com/c/{ticket-id}

• Azure DevOps: #(\d+) and https://dev.azure.com/your-org/your-project/_workitems/
edit/{ticket-id}

5.1.8 Detect Patterns in Code Comments

Exhaustive use of certain code comments indicate code smells. For example, a file that is filled with
TODO comments is usually not that reassuring. On a similar notes, organizations might use static
analysis tools and use code comments to suppress the findings. By configuring a set of patterns, you can
use CodeScene’s virtual code reviewer to detect such patterns as shown in Fig. 5.9.

Fig. 5.9: Detect specific type of code comments.

The configuration is a bit special, but read along for examples – it’s not hard:

Fig. 5.10 presents two patterns that CodeScene will match in the code comments of your hotspots. Each
pattern consists of two parts, separated by the regex inline comment syntax, (?#comment):

1. A regular expression to match in the code comments.

173

https://tools.ietf.org/html/rfc6570

CHAPTER 5. CONFIGURATION

Fig. 5.10: Configure regular expressions to detect code comments.

2. A descriptive name of the content that the regular expression matches. This will be used in the
virtual code reviewer.

In the first example, we match the expression codechecker_w+. That is, any code comment that starts
with codechecker_ followed by a string such as _confirmed or _critical. We then add the descriptive
comment (?#Suppress Dead Code). Note that only “Suppress Dead Code” makes up the name; the
(?#. . .) syntax is only to embed the name in the regex.

The second example shows a simpler pattern where we match the literal string TODO in a code comment,
and associate it with the label “Detect TODOs” which will then be displayed in the virtual code review.

5.1.9 Exclude Initial Commits from an Analysis

Some Git repositories start their life as an import of an existing codebase. If the previous history isn’t
migrated together with the code, the author that does the initial commit of the existing codebase gets
all the credit. This leads to a bias in the social analyses.

The solution is to exclude all contributions done as part of the initial commit. You specify those commits
(fetch them from your Git log) in the project configuration as shown in Fig. 5.11.

Fig. 5.11: Exclude specific commits from the analysis.

5.1.10 Exclude Files from an Analysis

An analysis will include all textual content in your repository. That means: you get an analysis of
your build scripts, resource files, configuration files, test data, etc. While it’s a good practice to run
an analysis of all content every now and then, there’s also the risk that you get too much noise in the
analysis results. For example, you typically want to exclude auto generated content.

174

CHAPTER 5. CONFIGURATION

Fig. 5.12: Exclude specific types of files.

The Exclude Files option lets you specify a set of file extensions that will be excluded from your analysis:

CodeScene comes with a set of pre-defined exclusion patterns that should match the most common cases.
You’re free to extend this set if you have additional file types that you want to exclude. Just remember
to use a semi-colon (;) to separate each file extension you want to exclude.

5.1.11 Exclude Specific Files and Folders from an Analysis

You just learned how you can exclude certain types of files, no matter where they are located in the your
codebase. But sometimes you’d like to exclude a particular file or, more often, a complete folder. For
example, let’s say that you check-in third party code in your repository. You don’t want that code to
obscure potential analysis findings in your own code.

There are two different ways to exclude complete folders and files:

1. White list the content you want to include in the analysis. All other content will automatically be
excluded.

2. Black list the content you want to exclude.

You can specify both white- and black list content. The white listing will be applied first.

You specify a glob pattern to white list the content to include in your analysis as illustrated in Fig. 5.13.

Fig. 5.13: Glob patterns to white list content.

You specify a glob pattern to Exclude Content from the analysis as illustrated in Fig. 5.14.

Fig. 5.14: Glob patterns to exclude content.

175

CHAPTER 5. CONFIGURATION

The example above will exclude all content under the external folder and the file samples.txt from the
generator folder.

Note: You need to specify your exclusion paths using UNIX style path names. That is, use forward
slashes as separators. Also note that the paths have to start with the name of your repository root.
That is, if your Git repository is located in a folder named backend, as in the example above, you have
to prepend that folder name to all your exclusion patterns. The reason for that is due to CodeScene’s
support for multiple repositories where you have to be explicit about what repository you exclude things
from.

There’s one exception to the rule that patterns have to specify the repository root. That’s the case when
you want a pattern to apply across all repositories. For example, let’s say that you want to exclude all
shell scripts in your test folder. In that case you specify a pattern like **/test/*.sh That is, your patterns
are allowed to start with a wildcard too.

5.1.12 A Brief Guide to Glob Patterns

Glob patterns let you specify paths- and file names with different wildcards. CodeScene supports the
following wildcards:

1. * : A single asterisk matches any string of characters. Use it to exclude or while list particular files.
For example *.h will exclude all files with extension h. You can also use the single asterisk to specify
glob patterns that apply to all your repositories in a multi repository analysis project. For example, the
glob pattern */version.txt will match (and possibly exclude) the version.txt files at the top level of each
of your repositories.

2. ** : The double asterisk matches whole paths/directories. You use the double asterisk to exclude
or white list content independent of the content’s location in your codebase. For example, the pattern
myrepository/**/*.h will match all files with extension h in any directory in your repository. You can
also use the double asterisk to match exclude or white list whole folders. Let’s say we want to exclude
all our unit tests from an analysis and that those tests are located in the repository ‘coolstuff’. Here’s a
pattern for that: coolstuff/test/**.

3. ?: The question mark matches a single character.

Please note that all glob patterns are specified using UNIX style path names. That is, if you’re on
Windows you do not use backslash to separate directory names, but rather the UNIX style forward
slash. That is, the directory SomeRepo\Test is excluded by specifying SomeRepo/Test/**.

5.1.13 Specify An Analysis Period

CodeScene lets you specify how far back in time we go to mine your repository history. The actual
analysis period you select depends on several factors:

1. The activity in your project: Select a short analysis period, like 6 months, in a codebase with a lot
of development activity.

2. The information you want: If you want an overall view of potential maintenance problems, we
recommend that you use a longer analysis period like a couple of years. If, on the other hand, you
want to identify recent modifications to the codebase, your analysis period could be as short as
just a couple of iterations, e.g. 1 month.

By default CodeScene uses three separate analysis periods depending on the type of information it
analyses:

• Hotspot information uses a sliding window to avoid that historic – but now stable – hotspots bias
more recent trends.

• The team-level analyses use a separate date. Specify the date of the last organizational change
here.

• Individual knowledge metrics and trends should use the full history of your repository.

176

CHAPTER 5. CONFIGURATION

The rationale is that analyses on the level of individual developers, like knowledge maps and knowledge
loss, need to take the full history of the codebase into account in order to be accurate. You can disable
this behavior and use the specified date for all analyses by unchecking the box “Use the complete Git
history for knowledge metrics” (see specify-analysis-date).

Similar, team-level analyses like coordination needs and Conway’s Law should ignore the historic activity
of previous organizational structures, and you want to measure from the date where the current team
structure got operational.

Finally, please remember that selecting an analysis time span depends on the questions you have. As
such your choice depends on your context and is more of a heuristic than a science. Always start with
an analysis of the full history when in doubt.

5.1.14 Working with Repo

The Repo tool is often used for very large projects containing many separate but related Git repositories.
A central Manifest XML file is then maintained to define the list of included projects.

CodeScene’s Repo integration makes it easier to analyze this kind of large project because you no
longer need to enter each sub-project separately. Just point CodeScene at your manifest repository and
CodeScene will use Repo to download your code. As your project evolves, CodeScene will keep your
analyses in sync, adding and removing Git repositories as necessary.

Using Repo introduces several important differences in how CodeScene works.

Overall approach

When using Repo with CodeScene, your project is controlled through the manifest file. CodeScene
synchronizes your project before every analysis, so any changes to your manifest are automatically and
immediately taken into account.

CodeScene supports branch selection in your manifest repository. You can select different branches to
checkout different versions of your project.

Creating a project with Repo

Repo must be installed on your local machine. If necessary, you can indicate the name of the Repo
executable in the CodeScene configuration.

To create your project, go to the “New Project” page, and choose “Google Repo”. You will be presented
with the following options:

Local path indicates where the new Repo directory will be installed. If the directory does not exist,
CodeScene will try to create it.

Repo URL is the URL of your repo manifest Git repository. This value will be used in calls to repo
init -u <URL> and should be in the format indicated:

git@github.com/myorg/my-manifests.git

Note that this value cannot be changed later. To change to a new manifest repository, you’ll need to
create a new project.

Manifest filename is the name of the manifest you’ll use. This field is required even if your manifest
is default.xml. Like the Repo URL, this cannot be changed without creating a new project.

Initial branch only needs to be filled out if the manifest file you wish to use is not available in the
master branch of your manifest repository. This allows CodeScene to “see” your manifest in order to
initialize your project.

177

https://gerrit.googlesource.com/git-repo/

CHAPTER 5. CONFIGURATION

Fig. 5.15: Getting started with Repo

When you click on “Initialize”, CodeScene will set up the Repo directory and download your manifest
file. The next page allows you to check that the Git repos to be clone are correct, and to switch branches
if necessary.

CodeScene will then clone your repositories. This may take a long time. When this step is complete,
project creation follows the usual path.

Working with Repo-based projects

The primary difference with Repo-based projects is that things like repository selection and branching
within Git repositories are handled through the manifest file, either by modifying it in your manifest
repository or by switching between branches in CodeScene.

To analyze a specific state of your project, you can use either a branch specification in your manifest file

<project name="my-git-project" revision="dev" />

or a specific commit hash

<project name="my-git-project" revision="b507579809e5e5cffee5fd078e2cdae658733538" />

Once a project has been created, you can go to its configuration page to select a new branch of the
manifest repository. When you save your changes, CodeScene will run repo init -b <branch> and
repo sync, which may take some time depending on the size of your project. If you try to switch to a
branch that does not contain a version of your manifest file, CodeScene will issue a warning and return
you to the previous branch.

Please note that when new branches are added to your manifest repository, CodeScene will not detect
them until repo init is run, either before an analysis or when selecting another branch.

178

CHAPTER 5. CONFIGURATION

Because of how Repo works, Active Branch analysis is not currently available for Repo-based projects.

With Repo, the inclusion of new Git projects does not go through the normal channels. As a result,
CodeScene does not at this time automatically generate an Architectural Component for each Git
repository. For the same reasons, and because by design the list of Git repositories in a project will
evolve over time, CodeScene does not validate Architectural Components against the files present on the
file system.

Duplicate project roots

Projects managed with repo tend to be large, containing many individual repositories, or projects, in
repo’s vocabulary. Projects in repo have distinct filesystem paths (either in the name or the path
attribute), which means that multiple individual projects can have the same name (the last part of the
path), as long as their paths are different:

/path/to/a/project
/path/to/another/project
/etc/project

CodeScene uses project names, and not paths, to identify projects. And this means that conflicts are
possible. CodeScene’s repo support is designed so that adding and removing projects from the manifest
file does not require any user intervention. CodeScene just follows along. In some, usually rare, cases,
CodeScene has to rename projects. This can be important when using Architectural Components,
Exclusion Filters or Temporal Coupling Filters that rely on a repository’s project root.

To disambiguate project names in this scenario, CodeScene generates its own project names from the
paths. The paths in the example above would result in the following repositories being used

path-to-a-project
path-to-another-project
etc-project

On project creation, when duplicate project roots are detected, CodeScene allows you to select your own
names if you prefer.

Fig. 5.16: Renaming Repo projects to avoid name conflicts

Whether you choose your own names or use those suggested automatically, these names will be preserved.
In other words, if the above paths are present on project creation, /etc/project will always be mapped
to etc-project, even if it is no longer a duplicate, that is if the other repositories named project are
removed from the manifest file.

This behavior only applies to project creation. Later, the manifest file may evolve and new name conflicts
may appear at any time, each time an analysis is run. In those cases, the automatically generated name
will be used, and their persistence cannot be guaranteed.

For example, if these paths are added to the manifest:

/a/new-project
/another/new-project

they will automatically become a-new-project and another-new-project. If one of them is removed,
the other will revert to its original name, ie. back to new-project.

179

CHAPTER 5. CONFIGURATION

In some even more rare cases, there can be a conflict between the derived name of a duplicate project,
like a-new-project and an existing, non-duplicated project that just happens to have the same name.
In these cases, a-new-project will be renamed to a-new-project-1 (or a-new-project-2 etc.).

5.1.15 Exporting the project configuration

On the Export tab, the entire project configuration or parts of it can be exported to downloadable JSON
and CSV files. This can be used for sharing the project configuration to another CodeScene instance, or
for archiving projects before deletion.

5.2 Configure Developers and Teams

Your knowledge maps are based on colors to give you an accessible high-level overview. The system will
automatically assign a distinct color to each top-contributor in your codebase on the first analysis.

Fig. 5.17: Sample on colored knowledge maps.

The rest of this guide will walk you through the configuration.

180

CHAPTER 5. CONFIGURATION

5.2.1 Important: Run an Initial Analysis Before You Configure Developers

CodeScene mines a list of all contributing developers. Note that this list is mined and updated during
each analysis. That means you need to run one initial analysis before the tool gives you the option to
configure developer properties!

5.2.2 Define Your Development Teams

Click the Teams tab in your project configuration to proceed to the teams configuration, as shown in
Fig. 5.18.

Fig. 5.18: Configure teams for a project in the Teams tab.

The only thing you have to do is to specify the name of each team in your organization. Later, when
you configure developers, you’ll assign them to the team names you chose here (see Fig. ??).

Tip: Some organizations just use one development team. In that case, introduce virtual teams that
depend upon the responsibilities of the different developers. For example, you might want to define a
Feature team, a Maintenance team and an Infrastructure team. Using this strategy, you’d be able to
identify code at risk for incompatible parallel changes since different forces lead to the changes.

181

CHAPTER 5. CONFIGURATION

Even Open-Source Software Has Teams

The team definition is straightforward if you analyze a codebase that’s owned by a traditional organiza-
tion; Just use the information from your organizational chart. However, we find it interesting to apply
teams to open-source codebases as well.

So if you happen to analyze an open-source project, consider introducing the following teams to get
additional social information:

• Define a teams for the organization that owns the code. For example, if you analyze the Clo-
jure codebase, you’d define Cognitect as one team. If you analyze one of Microsoft’s open-source
codebases, you’d use Microsoft as one team.

• Define a team for third party developers that contribute to the codebase

• Consider defining a team of the core maintainers too.

5.2.3 Configure Developer Properties

The developer properties are a bit more tricky than the team configuration, so please let us walk you
through them one by one as illustrated in Fig. 5.19.

Fig. 5.19: Specify organizational information for each developer.

CodeScene automatically updates the list of contributing developers; If a new developer starts to con-
tribute code, they’ll be present in the list and the tool lets you configure their properties.

Here are the properties you need to specify:

1. Active/Ex-Developer: By default, all developers are considered active. If some of them leave your
project, mark them as Ex-Developers and CodeScene will include them in the Knowledge Loss
Analysis.

2. Team: The second column lets you assign the developer to a team. This enables CodeScene’s
organizational analyses such as the Team Knowledge Distribution Analysis.

3. Exclude author from analysis: If you check this option, the author will be excluded from all social
analyses (although their contributions will still be included in the technical analyses like Hotspots
and Code Churn). This is an option you use in case you have roles like System Integrators that
only merge code, but never actually make their own contributions.

Once you’ve defined all developer properties you just need to run a new analysis and you’ll get a smor-
gasbord of interesting social analysis results.

182

CHAPTER 5. CONFIGURATION

5.2.4 Developers and their Aliases: Mapping Version-Control Names to People

Often, over the lifetime of a project, some developers will sign their commits with different names. This
can be a source of inaccuracies for CodeScene’s social analysis tools.

To deal with this, CodeScene provides an interface that allows you to specify the version-control names
that correspond with real people. In CodeScene, when we talk about a Developer, we mean the real
person. Team membership, author exclusion and ex-developer status belong to the developer. Each
developer has at least one Alias, which is how they are identified in version control.

For example, a developer named Jane Doe might have several aliases in version control commits:
Doe, Jane, janedoe, J. Doe, etc. This interface allows theses aliases all to refer to the same person,
which provides more meaningful results in social analyses and unifies the information we have about the
developer in question.

Workflow

To access the interface, click on the Developer identity mapping interface link near the top of the Devel-
opers page.

On the left, the interface displays a list of the current developers.

Fig. 5.20: The Developer panel

Choose a developer you want to work on. This is the name that you want to keep.

On the right, a new list will appear. Here you can add (merge) or remove (separate) aliases from the
developer you selected.

In this example, we might want to merge the aliases “Aaron Bedra & Stuart Sierra” and “Aaron Bedra
and Stuart Halloway” with “Aaron Bedra”. After selecting those two aliases, we would click on the
Stage changes button. This updates the list of developers on the left. Now we can either make other
modifications or click on “Submit” at the top of the window to finalize the operation.

Separating aliases from their developers

If we change our minds, we can later separate these aliases from the developer that we assigned them
to. To do this, we select the corresponding checkbox and click on Stage changes again.

183

CHAPTER 5. CONFIGURATION

Fig. 5.21: When developer is selected, the aliases appear

Fig. 5.22: Separating an alias from a developer.

184

CHAPTER 5. CONFIGURATION

After clicking on Submit, the aliases we chose to separate will become full-fledged developers. Because
these are new identities, group membership, ex-developer status, and exclusion status will be lost. Merg-
ing and unmerging an alias is lossy.

Finding aliases

You can use the “Filter aliases” box to search for matching aliases. Regular expressions are allowed, with
whitespace counting as a logical OR.

Fig. 5.23: Using a regular expression to filter aliases

Renaming developers

Because the Developer is separate from the version control alias, developers can be renamed without
changing how they are detected by CodeScene’s analyses. To change a developer’s name, click on that
developer in the left column. You will notice an “Edit name” link next to their name in the box on the
right.

Fig. 5.24: Editing a developer’s name

Automatic alias resolution

Often, when a developer changes work environments, they will use slightly different names while keeping
the same email address. In these cases, CodeScene can automatically detect aliases that in most cases
should be merged together. When you run an analysis, CodeScene provides a warning:

Inside the developer alias interface, when CodeScene has identified merge suggestions, a button is visible
that allows all the suggestions to be merged at once:

Clicking on the button will cause all the suggestions to be staged. You will still need to click on “Submit”
to save the changes.

CodeScene uses two different criteria for making merge suggestions:

185

CHAPTER 5. CONFIGURATION

Fig. 5.25: The early warning in the analysis results

Fig. 5.26: Merge all suggestions

186

CHAPTER 5. CONFIGURATION

• If a developer already has more than one alias, CodeScene will suggest adding more aliases to that
developer.

• Otherwise, CodeScene chooses the developer with the longest name (excluding names that are
actually email addresses).

If you need more control, the suggestions are also visible in the list of developers and will appear when
you select a developer.

5.2.5 Import or Export a Definition of Development Teams

It may well be impractical to configure each team and developer via the UI, particularly for large
organizations. That’s why CodeScene supports importing the team definitions by uploading a csv-
file specifying the organization. You can also share teams between projects, by exporting your team
definitions and then importing them in another project.

You will find the import and export functionality in the Team configuration:

Fig. 5.27: Importing developer information by uploading a CSV file.

The input file specifies your organization. The file format used is a CSV with two columns: author and
team.

5.3 Users and Roles

CodeScene lets you create users and grant them various levels of access depending on their roles.

5.3.1 First Time Access

Use your CodeScene Username and License Key the first time you login to CodeScene. That way you
will be granted full administrative privileges. We recommend using the administrator login only for the
initial setup of a dedicated Admin user role, as well as user accounts with restricted access for regular
work.

5.3.2 Adding Users

Adding users requires Admin privileges.

By clicking on Configuration and the Users/Authentication tab in the top navigation bar, you can access
the Users configuration page. As an administrator, you should see the Users configuration, as in Fig.
5.28.

Enter the user name and password, and click “Add User” to finish. The password can be changed later
if needed, either by the administrator or by the users themselves.

5.3.3 Assigning Roles

The system comes preconfigured with a number of roles. You can assign roles to the users in your system
to grant them specific access.

187

CHAPTER 5. CONFIGURATION

Fig. 5.28: In the global configuration you can add new users to the system.

Admin
Full configuration access, including user management and deletion of projects.

Technical
Technical and architectural analyses only. No social analyses.

Developer
Technical, architectural and social analyses

Test Leader
Technical, architectural and social analyses; plan goals;

Technical Lead
Technical, architectural and social analyses; plan goals;

Architect
Technical, architectural and social analyses; plan goals; project configuration

Manager
Full access and configuration privileges.

Full Read-only Access
All analysis results, but cannot perform any actions. Typically used to display a monitor dashboard.

Bot This role is intended for third-party integrations like code review or continuous integration bots.
This role is allowed to trigger an analysis and access the overview of the result.

In the table of existing users you can see the currently assigned roles. Click on the Role select box, as
shown in Fig. 5.29, to change the assigned role of a user.

Fig. 5.29: By clicking the Role select box you can change the assigned role of a user.

188

CHAPTER 5. CONFIGURATION

5.3.4 Permissions by Role

This is a more detailed description of various permissions associated with the CodeScene roles.

189

CHAPTER 5. CONFIGURATION

Role Permissions
Technical • Change own password

• Technical analyses - warnings, hotspots,
temporal coupling, code churn trends

Developer Same as Technical plus:
• Analysis process branches (branch statistics

in Project Management -> Console)
• Social analyses - networks, knowledge map,

parallel development, code churn by author,
warnings, modus operandi

• Architectural analyses - hotspots, temporal
coupling

Architect Same as Developer plus:
• Project configuration including Access

Management but not authorised to
Delete projects

• Run a project analysis
• Project management - Costs and Risks in

Project Management
• Analysis monitor (Project config -> History

-> Monitor)
• Off-boarding simulation

Test Leader • Change own password
• Analysis overview
• Technical analyses - hotspots
• Social analyses - knowledge map

Manager • Change own password
• Analysis overview
• Analysis process branches
• Technical analyses - hotspots
• Social analyses - networks, knowledge map,

parallel development, code churn by author,
warnings, modus operandi

• Project management - Costs and Risks
• Analysis monitor
• Off-boarding simulation

Full Read-only Access • Analysis overview
• Analysis process branches
• Technical analyses (same as Technical)
• Social analyses (same as Developer)
• Architectural analyses (same as Developer)
• Project management (same as Architect)
• Analysis monitor

Bot • Analysis overview
• Run a project analysis (used for delta anal-

ysis)

190

CHAPTER 5. CONFIGURATION

5.3.5 Project Access Management

Global Configuration

By default, all projects are visible to all CodeScene users. You can change this setting by selecting
“Restrict access to all projects . . . ” in the global configuration as shown in Fig. ??.

When access is restricted, only ‘project collaborators’ are allowed to access a project. Read more about
project collaborators in the next section.

Project-specific Configuration

The administrator or users with the Architect role can configure project access management settings on
a per-project basis in the project configuration tab Access Management:

Project Access Mode

There are three choices for Project Access Mode:

191

CHAPTER 5. CONFIGURATION

1. Allow Everyone - everyone is allowed to access the project regardless of the Default Project
Access setting in the global configuration

2. Restrict Access - only project collaborators are allowed to access the project

3. Inherit Default Setting - use whatever project access mode is set in the global configuration.

Note: The administrator can always access all projects.

:: _project-collaborators: Project Collaborators `````````````````

To add a normal CodeScene user as a collaborator just enter their username and click the Add
Collaborator button. For an LDAP user, use the distinguished name of the LDAP user or some
of their LDAP groups.

When a collaborator logs in, they will only be able to see projects accessible to them.

If you use the delta analysis API you need to add your Bot user to project collaborators too.

5.3.6 Single Sign-On

By default, CodeScene operates with an internal user database. Alternatively, you can configure an-
other authentication provider, such as LDAP/Active Directory or OAuth2/OpenID Connect, to perform
identity verification for your users, thus avoiding the duplication of your users’ accounts in CodeScene.
Users can then log in using the same credentials that they use for other services within your system.
When using OAuth2/OpenID Connect, the users are redirected to the configured provider to authorize
CodeScene at first login.

LDAP Authentication Provider

A generic LDAP server or Active Directory can be used for user authentication.

LDAP authentication is turned off by default and the configuration fields are hidden as shown in Fig.
??.

Activate LDAP Authentication by clicking on the “Use LDAP Authentication” checkbox and fill in the
details as shown in Fig. ??.

You will need to configure the “LDAP host” address and the “LDAP search base” settings. CodeScene
provides default values for the remaining settings, e.g. port and connection timeouts.

The “LDAP search base” is used as a root for LDAP queries searching for data about users and their
groups. Make sure to specify a proper base for the search to not miss any relevant user data. See
Components of an LDAP Search: for more details.

The “LDAP Bind DN format” is used to create a proper full login name accepted by your LDAP
server. It’s usually a full “Distinguished Name”, although Active Directory supports various formats
like the “User Principal Name” (e.g. username@mycompany.com) or sAMAccountName. You will use
{username} placeholder to configure the username expansion - see the examples on the Configuration
page. You can leave this field empty if your users always enter the full login name manually.

We also encourage you to use the “Secure LDAP” connection by checking the “Use Secure LDAP con-
nection” checkbox. In this case, you will need to change the LDAP port too; secure LDAP connections
often use port 636.

192

https://technet.microsoft.com/en-us/library/cc978021.aspx?f=255&MSPPError=-2147217396
mailto:username@mycompany.com

CHAPTER 5. CONFIGURATION

193

CHAPTER 5. CONFIGURATION

LDAP Roles Settings

Like normal CodeScene users, users authenticated with the LDAP authentication provider also need to
have a “role” assigned to them. This is done with the “LDAP Roles Settings” as shown in Fig. ??.

When user data is fetched from an LDAP server, the user’s “identifiers” and his LDAP groups are
matched to CodeScene roles based on the “LDAP Roles Settings” configuration:

• To identify a user, you can use his username, sAMAccountName (Active Directory only), bind DN,
or full DN.

• To identify a group, you can use full DN or Common Name - note that using Common Name
isn’t recommended and is provided only for backward compatibility reasons (the Common Name
attribute isn’t guaranteed to be unique and it isn’t possible to use it in Project Access Management).

In the example configuration, you can see that the user juraj.martinka has the role Developer and
all members of the LDAP group CN=CodeScene Managers,OU=Empear,DC=mycompany,DC=local are
Manager-s.

Nested groups are supported; that is if the LDAP user is a member of the group “Managers” which is a
member of the group “CodeScene Managers” then that LDAP user will have the CodeScene’s Manager
role too.

If no matching CodeScene role is found for the LDAP user, the value of “Default CodeScene role” is
used. By default, this is set to Full Read-Only Access, but it can be changed to a more restrictive role
or even a special No Access role which will deny access to all LDAP users who aren’t mapped explicitly.
You can see this in Fig. ??.

194

CHAPTER 5. CONFIGURATION

OAuth2 Authentication Provider

A generic OAuth2/Open ID Connect server can be used for user authentication. CodeScene supports
the Authorization Code Grant flow, and uses the token received through the authorization process to
access user and team info from configurable URLs at the OAuth2 provider.

OAuth2 authentication is turned off by default and the configuration fields are hidden as shown in Fig.
??.

Activate OAuth2 Authentication by clicking on the “Use OAuth2 Authentication” checkbox and fill in
the details as shown in Fig. ??.

You will need to register CodeScene as an application/consumer at the OAuth2 provider. The provider
will then create a Client ID and Secret that you use when configuring the provider in CodeScene. The
other settings are specific for each provider, and the buttons at the top can be used to set these to typical
settings for some common providers. Note that the scope requested must be such that it gives access to
the specified user/team URLs and fields.

The User URL setting supports URLs like the OpenID Connect UserInfo endpoint, i.e. an URL that,
when given an access token, returns claims for the logged in user.

Similarly, the Teams URL supports URLs that, when given an access token, return a list of the teams
that the logged in user is a member of.

Note about the User Name and Team Name fields:

• The User Name field is a JSON Path string that selects an attribute in the user API response that
represents a user’s identifier.

195

https://github.com/gga/json-path#json-path

CHAPTER 5. CONFIGURATION

• The Team Name field is a JSON Path string that selects names of all teams in the teams API
response. Some providers return teams as a top-level JSON array while others (like BitBucket and
Azure AD) return them wrapped in another top-level JSON object. Check the typical settings for
providers.

E.g. Bitbucket Teams API may return following API response:

{
"pagelen" : 10,
"values" : [{
"username" : "empear",
"display_name" : "empear",
"uuid" : "{f19d05a0-693c-4327-bd80-58eff5a64d04}",
"links" : {

"hooks" : {
"href" : "https://api.bitbucket.org/2.0/teams/%7Bf19d05a0-693c-4327-bd80-58eff5a64d04

→˓%7D/hooks"
},
...

},
"created_on" : "2018-04-16T13:38:09.387625+00:00",
"type" : "team",
"properties" : { },
"has_2fa_enabled" : null

}],
"page" : 1,
"size" : 1

}

To extract the team name, which is stored as the username field in the values array, we use the following
JSON Path syntax: $.values[*].username. The * symbol selects all the elements (teams) in the values
array if multiple teams are returned in the response.

In summary, the steps to follow for configuring OAuth2 authentication are:

1. In CodeScene, make sure the CodeScene Host URL is set to a URL where CodeScene can be reached
from the OAuth2 Provider.

2. Note the Redirect URL in CodeScene’s OAuth2 Provider Settings.

3. At the OAuth2 provider, register an application/consumer and set the Callback/Redirect URL to
CodeScene’s Redirect URL.

196

https://github.com/gga/json-path#json-path

CHAPTER 5. CONFIGURATION

4. Note the Client ID and Client Secret values.

5. In CodeScene, set the Client ID and Client Secret values.

6. Set the other OAuth2 Provider Settings to values specific for the OAuth2 provider.

OAuth2 Roles Settings

OAuth2 role settings and matching works exactly as described in LDAP Roles Settings (page 194) with
the difference that the matching in this case is done using the username and team names acquired from
the User/Team URLs as defined in the Oauth2 Provider Settings.

5.4 Configure CodeScene for Pair Programming

If you use pair programming, CodeScene can adjust the knowledge maps by splitting the code contribu-
tions between the members of each pair. CodeScene can deduce the contributing pair from either 1) the
commit message, or 2) the author field. The options can be combined.

Configure your pair programming options in the Social part of your project configuration as shown in
Fig. 5.30.

Fig. 5.30: Configure patterns to extract author information that reflects pair programming.

CodeScene adjusts the knowledge maps by splitting the code contributions between the members of each
pair.

The configuration is based on regular expressions with the following constraints:

1. It must contain at least one match group.

2. Each match group will map to exactly one author.

Similarly, CodeScene can also extract author information from the author field in Git. Use the second
regular expression for that.

5.4.1 Configuration Examples

Most pair programming patterns contain some kind of delimiter in the commit message. The preceding
examples used square brackets for the pair programming info, [and], and a pipe | to separate the
authors, but CodeScene supports any delimiter like Pair: X,Y or (devs: X/Y).

197

CHAPTER 5. CONFIGURATION

Fig. 5.31: Pair and mob programming annotations in the commit message.

The most common patterns are:

• Always a pair : Specify a pattern such that you get two match groups. For example, to match the
authors in [Author X|Author Y] you use a pattern like [([ws]+)|([ws]+)].

• Sometimes a pair, sometimes an individual: CodeScene defaults to Git’s Author information field
if it cannot match the configured pattern, so this scenario will work with the previous pattern.

• All author info is in the commit message: In this case you need to make the second match group
optional. For example, to match both the pair [Author X|Author Y] and the single developer
[Author X] you specify [([ws]+)|?([ws]+)?].

• Many authors (a mob): To match more than two authors, we recommend that you introduce even
more optional match groups. For example, to match [Author X|Author Y|Author Z] you specify
[([ws]+)|?([ws]+)?|?([ws]+)?].

Those more elaborate patterns may be a bit tricky, but it’s a one off configuration so once you have it
up and running you won’t see it again.

For pair info that is specified in the author field, the following expression, ([ws]+)s+&s+([ws]+), would
match an author field specified as Author: Developer A & Developer B.

5.4.2 Map Aliases for Authors in the Pairs

Finally, note that the preceding examples use aliases for each author instead of their full names. You
can map those aliases to real author names using CodeScene’s UI for developer identity aliases.

5.5 Project Management Integration

CodeScene supports integration with project management (PM) systems, like JIRA. Issues in the PM
system are mapped to the corresponding commits in the version control system.

5.5.1 Repository Configuration

By default, PM integration is disabled (see Fig. 5.32). Enable by checking the ‘Enabled’ checkbox.

198

https://www.atlassian.com/software/jira

CHAPTER 5. CONFIGURATION

Fig. 5.32: Check ‘Enabled’ to enable the project management integration.

Enabling the integration lets you edit the remaining fields (see Fig. 5.33):

API URL
The base URL of the PM integration service. If you have deployed the JIRA integration in Tomcat,
the URL will likely be http://localhost:8080/codescene-enterprise-pm-jira.

API Credentials
The credentials needed to access the PM integration service. Note that these are the credentials
that are configured in the PM integration service.

Test Connection
Try connecting using the specified API URL and credentials, and check the status of the PM API,
before saving the configuration. Use this option to verify the connection before running an analysis.

External Project ID
The project identifier in the external system. If the external system is JIRA, this field should
contain the JIRA project key. For example, if issues are named MYPROJ-123, the project key
(and thus the external project ID) is MYPROJ.

You can add multiple JIRA projects here by separating them with a semicolon, ; as shown in Fig. 5.34

5.5.2 Ticket ID Configuration

Each item from the PM integration has an ID that needs to match the Ticket IDs in CodeScene. For
example, when integrating with JIRA, the mapping needs to extract the ID part from the JIRA issue
key. In addition to mapping item IDs from the PM system, the ticket IDs need to be extracted from
the VCS logs, which is called Ticket ID Mapping. Tune the House-Keeping Options for Analysis Results
(page 171) explains Ticket ID Mapping in greater detail. Fig. 5.35 illustrates how both mappings extracts
IDs with the same format.

Ticket ID Configuration for Multiple JIRA Projects

Please note that in case you integrate with multiple JIRA projects, you may have to use a different
Ticket ID configuration in case the ID’s may overlap.

For example, let’s say you integrate with three projects. Each project will have a JIRA ID like
FRONTEND-123, BACKEND-765 and so on. In this case you want to use the whole JIRA ID as a
Ticket ID to ensure that they are unique. In addition, you need to specify a regular expression that will
match all your possible JIRA ID ranges

199

CHAPTER 5. CONFIGURATION

Fig. 5.33: A configuration sample for project management integration.

Fig. 5.34: A configuration sample for integration with multiple projects.

200

CHAPTER 5. CONFIGURATION

Fig. 5.35: Ticket IDs are extracted from the VCS logs using Ticket ID Mapping, and Project Management Item
IDs are mapped from JIRA issue keys using a configured pattern in the JIRA integration service.

Fig. 5.36 shows an example on such a configuration.

Fig. 5.36: Ticket ID specification that matches items from multiple JIRA projects.

5.6 Manage Projects

A large organization might have hundreds of CodeScene projects. This section explains how you get an
overview of those projects, see which one’s are the most active, and where most active authors reside.
You use this information to identify inactive projects that can be removed safely in order to keep license
costs down. Let’s start by explaining how CodeScene’s license model works.

5.6.1 What’s an Active Author?

CodeScene’s license is based on the number of active contributors. An active contributor is anyone
who has committed code over the past three months to the codebases you want to analyse. This time
period is a sliding window that always starts at the date of the most recent commit in your repositories.
CodeScene applies the following additional rules:

• Each author is only counted once. That is, if you analyze multiple codebases, the same persons
only count once no matter how many projects they contribute to.

• Historic contributors are free. People who haven’t committed code within the last three months
are included for free and don’t add to the license fee.

201

CHAPTER 5. CONFIGURATION

You can get a rough estimate on the number of active authors in a Git repository through the following
command:

git shortlog -sn --after=2018-07-01

Note that you want to replace the –after date with a date that’s three months back from where you are
now.

5.6.2 How do I monitor Project Activity and Active Authors?

The aggregated number of active authors is shown in the footer on CodeScene’s start page, as shown in
Fig. 5.37.

Fig. 5.37: The number of active authors is shown in the footer on the front page.

In addition, CodeScene comes with a project activity view. If you login as an admin, you can inspect
the project usage activity as shown in Fig. 5.38.

Fig. 5.38: A summary of the project usage activity in CodeScene.

This view lets you identify inactive projects that haven’t been accessed in a long time (2-3 months),
and safely delete them to keep the active author count down and maybe save some licensing fees in the
process; Although we’re admittedly happy the more users you have, we also want the licensing to be fair.
So we recommend that you inspect the project usage regularly.

5.7 Performance: Enable Concurrent Analyses

By default, the analyses in CodeScene are executed serially. That is, an analysis starts once the previous
one has completed. The rationale for the default behavior is to let CodeScene work well on limited
hardware; the analyses might consume plenty of memory and CPU.

202

CHAPTER 5. CONFIGURATION

However, if you have enough hardware capabilities available, then you can run more analyses in parallel
and optimize the overall analysis time.

5.7.1 Enable Concurrent Analyses

As an admin, go to the top level Configuration tab as shown in Fig. 4.102.

Fig. 5.39: Configure the maximum number of concurrent analyses.

Note that a change setting requires a restart of the CodeScene service in this case (yes, we’re sorry!).

You also have to make sure you have enough system resources to execute incoming CI/CD delta analysis
requests that will be processed in parallel to the analyses as well.

5.8 Legal Restrictions

Some analysis information from CodeScene may be considered sensitive from a legal perspective. This is
a topic that varies between different jurisdictions and/or company policies. Thus, CodeScene provides
configuration options that let you disable such information.

5.8.1 Disable the Author Statistics

CodeScene provides an aggregated view of all author contributions. This information is intended as
descriptive data that lets you find long-term contributors as shown in Fig. 4.102.

You disable this analysis by logging in as an administrator, click the Configuration tab in the top bar,
and check the box as shown in Fig. 5.41.

203

CHAPTER 5. CONFIGURATION

Fig. 5.40: The detailed author statistics show the aggregated contributions.

Fig. 5.41: The configuration lets a CodeScene administrator disable sensitive information.

204

CHAPTER 5. CONFIGURATION

5.8.2 Disable the Off-Boarding Simulation

The off-boarding simulation lets you simulate the impact in case individual developers leave the organi-
zation. You disable the off-boarding simulation as shown in Fig. 4.137.

Fig. 5.42: The off-boarding simulation can be disabled in the global configuration.

5.8.3 A Warning on Performance Evaluations

The detailed author statistics are useful in order to find the people that carry the history of your codebase
and product in their head. Their stories often complement the analysis results and help you put your
findings into context.

We strongly recommend against using this data for performance evaluations. That isn’t the purpose
of these analyses. The reason we advice against this is part ethical and part practical. In particular,
once someone starts to evaluate contributors people will adapt by optimizing for what’s being measured.
For example, if I’m evaluated by how many commits I do I’ll increase the number of commits. My
commits will no longer carry any meaning, but my statistics “improve”. In addition, using this data for
performance evaluation is likely to destroy the team dynamics. Again, if I’m measured by how many
commits or lines of code I produce I’m less likely to invest time in supporting my peers and we end up
with local optimizations that hurt the overall productivity.

205

	Getting Started
	Deployment Options
	System Requirements
	Public Cloud (AWS, Azure, et. al.)
	Backups

	Installation
	Install the Supporting Tools
	Run the Standalone CodeScene Application
	Run CodeScene in Tomcat
	Configure additional users

	Configure Your Environment
	Setup an SSH Key for Git
	Using Basic Authentication for Git
	Persistent Authentication Sessions
	Set up a Proxy Server

	Run an Analysis
	Creating a New Project
	Force an Analysis
	Run a Retrospective
	Find your Way Around
	Analyse Projects with Git Submodules

	Resolve Developer Aliases
	Use a Reverse Proxy for HTTPS Support
	Upgrade Your License
	Upgrade from an Expired License
	Upgrade from a Previous License

	Troubleshooting: Diagnostics, Errors, and Logs
	Analysis Errors
	Logs

	Hands On Behavioral Code Analysis: CodeScene Use Cases
	What is a Behavioral Code Analysis?
	The Two Main Use Cases for Behavioral Code Analysis
	A Workflow to Manage Technical Debt
	Identify and Prioritize Technical Debt in Your First Analyses
	Act on the Identified Technical Debt
	Track and Visualize the State of your Technical Debt
	Supervise Your Goals with CI/CD Quality Gates

	Track Multiple Codebases and Products on the Inter-Project Dashboard
	Subscribe to Auto-Generated Analysis Reports
	What’s Next?

	Integrations
	Integrate CodeScene in your CI/CD Pipeline
	CodeScene Jenkins Plugin
	CodeScene’s Automated Pull Request Review for GitHub, GitLab, BitBucket and Azure DevOps
	Integrate CodeScene with GitHub Checks API
	CodeScene Orb for CircleCI Integration
	CodeScene Integration with Gerrit

	Integrate Costs and Issues into CodeScene (Jira, Trello, Azure DevOps and GitHub Issues)
	CodeScene’s Cost Model
	Calculating Development Costs: the four options
	Export Cost Data to Excel/CSV
	Configuration
	Advanced Information: CodeScene’s Cost Distribution

	REST API
	The REST API documentation URL
	Using CodeScene’s REST API
	Examples: Use Cases and Scripts

	Keep Tabs on the State of your Code with Badges
	Types of Badges
	Configuration
	Embedding
	Embedding on GitHub
	Security

	Guides
	Dashboards and Reporting
	CodeScene’s Dashboards: The Status of Your Codebase at a Glance
	Custom Reports: Export Detailed Data as CSV Files

	Technical
	Hotspots
	Code Health – How easy is your code to maintain and evolve?
	Manage Hotspots and Technical Debt with Goals
	Change Coupling: Visualize Logical Dependencies
	Complexity Trends
	X-Ray
	Development Output and Code Churn
	Code Age

	Architectural
	Architectural Analyses

	Social
	Delivery Effectiveness by Organizational Trends
	Social Networks
	Knowledge Distribution
	Parallel Development and Code Fragmentation
	Modus Operandi
	Author and Team Statistics
	Know the possible Biases in the Data

	Project Management
	Project Management Analyses
	Risk Analysis

	Continuous Integration and Code Review API
	CI/CD Integration with CodeScene’s Delta Analysis
	Branch Analyses

	Delivery Performance
	Measure Delivery Performance with Business Metrics

	Simulations
	Team Planning with the On- and Off-Boarding Simulation

	Miscellaneous
	Notifications

	Configuration
	Project Configuration
	Specify the Git Repository to Analyze
	Analyze Projects organized in Multiple Git Repositories
	Auto-Import Repository Paths
	Tune the House-Keeping Options for Analysis Results
	Measure Temporal Coupling across Multiple Repositories
	Temporal Coupling Exclusion Filters
	Linking to an External Ticket System
	Detect Patterns in Code Comments
	Exclude Initial Commits from an Analysis
	Exclude Files from an Analysis
	Exclude Specific Files and Folders from an Analysis
	A Brief Guide to Glob Patterns
	Specify An Analysis Period
	Working with Repo
	Exporting the project configuration

	Configure Developers and Teams
	Important: Run an Initial Analysis Before You Configure Developers
	Define Your Development Teams
	Configure Developer Properties
	Developers and their Aliases: Mapping Version-Control Names to People
	Import or Export a Definition of Development Teams

	Users and Roles
	First Time Access
	Adding Users
	Assigning Roles
	Permissions by Role
	Project Access Management
	Single Sign-On

	Configure CodeScene for Pair Programming
	Configuration Examples
	Map Aliases for Authors in the Pairs

	Project Management Integration
	Repository Configuration
	Ticket ID Configuration

	Manage Projects
	What’s an Active Author?
	How do I monitor Project Activity and Active Authors?

	Performance: Enable Concurrent Analyses
	Enable Concurrent Analyses

	Legal Restrictions
	Disable the Author Statistics
	Disable the Off-Boarding Simulation
	A Warning on Performance Evaluations

