
Enterprise Edition

2.5.0

June 19, 2018

Contents

1 Getting Started 3
1.1 Configure Your Environment . 3

1.1.1 Install the Supporting Tools . 3
1.1.2 Setup an SSH Key for Git . 3
1.1.3 Setup Proxy Server . 3

1.2 Installation . 5
1.2.1 Run CodeScene from the Command Line . 5
1.2.2 Configure the available Memory . 6
1.2.3 Install CodeScene on a Server . 6
1.2.4 Configure additional users . 7

1.3 Run an Analysis . 8
1.3.1 Creating a New Project . 8
1.3.2 Force an Analysis . 9
1.3.3 Run a Retrospective . 9
1.3.4 Find your Way Around . 9

1.4 Resolve Developer Aliases . 12
1.5 Use a Reverse Proxy for HTTPS Support . 12
1.6 Display A Monitor Dashboard . 13

1.6.1 View the Monitor Dashboard . 13
1.6.2 Supervise your Feature Branches . 14

1.7 Upgrade Your License . 14
1.7.1 Upgrade from an Expired License . 14
1.7.2 Upgrade from a Previous License . 15

2 Guides 16
2.1 Technical . 16

2.1.1 Hotspots . 16
2.1.2 Temporal Coupling . 21
2.1.3 Complexity Trends . 27
2.1.4 X-Ray . 32
2.1.5 Code Biomarkers–A Virtual Code Reviewer . 42
2.1.6 Code Churn . 46
2.1.7 Code Age . 49

2.2 Architectural . 54
2.2.1 Architectural Analyses . 54

2.3 Social . 66
2.3.1 Social Networks . 66
2.3.2 Knowledge Distribution . 68
2.3.3 Parallel Development and Code Fragmentation . 73
2.3.4 Modus Operandi . 75
2.3.5 Author Statistics . 75
2.3.6 Know the possible Biases in the Data . 77

2.4 Project Management . 78
2.4.1 Project Management Analyses . 78
2.4.2 Risk Analysis . 82

1

CONTENTS

2.5 Continuous Integration and Code Review API . 84
2.5.1 Automated Delta Analysis . 84
2.5.2 Branch Analyses . 90

2.6 Miscellaneous . 92
2.6.1 Notifications . 92

3 Configuration 98
3.1 Project Configuration . 98

3.1.1 Specify the Git Repository to Analyze . 98
3.1.2 Analyze Projects organized in Multiple Git Repositories 98
3.1.3 Auto-Import Repository Paths . 99
3.1.4 Tune the House-Keeping Options for Analysis Results 100
3.1.5 Measure Temporal Coupling across Multiple Repositories 101
3.1.6 Temporal Coupling Exclusion Filters . 102
3.1.7 Linking to an External Ticket System . 103
3.1.8 Exclude Initial Commits from an Analysis . 103
3.1.9 Exclude Files from an Analysis . 103
3.1.10 Exclude Specific Files and Folders from an Analysis 104
3.1.11 A Brief Guide to Glob Patterns . 105
3.1.12 Specify An Analysis Period . 105
3.1.13 Visualization Options . 106
3.1.14 Working with Repo . 107

3.2 Configure Developers and Teams . 109
3.2.1 Important: Run an Initial Analysis Before You Configure Developers 110
3.2.2 Define Your Development Teams . 110
3.2.3 Configure Developer Properties . 111
3.2.4 Developers and their Aliases: Mapping Version-Control Names to People 112
3.2.5 Configure for Pair Programming . 115
3.2.6 Import a Definition of Development Teams . 116

3.3 Users and Roles . 116
3.3.1 Adding Users . 117
3.3.2 Assigning Roles . 117
3.3.3 Permissions by Role . 117
3.3.4 Project Access Management . 119
3.3.5 Single Sign-On . 120

3.4 Project Management Integration . 122
3.4.1 Repository Configuration . 123
3.4.2 Ticket ID Configuration . 123

3.5 Legal Restrictions . 125
3.5.1 Disable the Author Statistics . 125
3.5.2 A Warning on Performance Evaluations . 127

Welcome to the CodeScene documentation!

This documentation is divided into sections, each being suited for different types of information you
might be looking for.

• Getting Started (page 3) helps you take the first steps after you purchase of CodeScene. You will
learn how to install and setup the tool, as well as running your first analysis.

• Guides (page 16) walk you through specific features and aspects of the tool, focusing on how you
can use them to achieve certain goals.

• Configuration (page 98) explains how you configure projects to get the best possible analysis results.

2

Chapter 1

Getting Started

CodeScene is a web-based application that you install on a server and access via your web browser. Once
you’ve installed the tool, you will be up and running with your first analysis results in just a few minutes.

1.1 Configure Your Environment

CodeScene runs anywhere a modern Java Virtual Machine (JVM) runs. We test the tool on Mac OS,
Windows, and different Linux distributions.

The system requirements depend upon the size and history of the codebase you want to analyze. In
general, RAM memory is the most critical resource on the server. That means you want to ensure that
there’s at least 4 Gb of RAM available for the CodeScene application.

1.1.1 Install the Supporting Tools

You need to install the following to run CodeScene:

• A Java run-time (or JDK if you run from the command prompt), 64-bit version, at least Java 1.8.
You ensure you have the right Java version by typing java -version in a command prompt.

• Have a Git client on your path since the tool will assume there’s an executable named git somewhere.
Your Git client has to be at least version 2.14. You ensure you have the right Git client version by
typing git --version in a command prompt.

Please note that you can specify a custom Git client in the Configuration section once you login to
CodeScene.

1.1.2 Setup an SSH Key for Git

CodeScene operates on local clones of your Git repositories. CodeScene does an automated git pull before
an analyses, which lets you see the latest changes reflected in your analysis results. This means you need
to grant CodeScene access to your repository origins. You do that by providing an SSH key (see for
example https://git-scm.com/book/be/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key).

NOTE: If you chose to run CodeScene in Tomcat, the SSH key has to be associated with the Tomcat
user since that’s the user who will access the Git repositories.

1.1.3 Setup Proxy Server

If codescene is running behind proxy server, you might need to provide proper configuration.

3

https://git-scm.com/book/be/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key

CHAPTER 1. GETTING STARTED

Whenever you’re trying to login or activate license, Codescene contacts the license server to check if
license is valid and update license limitations.

Without a proper proxy configuration, CodeScene won’t be able to check the license and update the
license limitations in case they were changed on the server and show an error message (unless you’re in
offline mode - more on that later).

User can provide proxy configuration when logging in - if license check is successful and user is admin,
the proxy configuration will be automatically saved in global config to avoid bothering user the next
time.

Proxy Without Authentication

If you use proxy server without authentication, CodeScene might be able to automatically detect the
proper configuration based on your operating system settings. You can always check current proxy
configuration in Configuration -> Proxy Server.

Proxy with Basic authentication

If your proxy server is configured to use Basic authentication, you need to provide proper username and
password. Please, fill ‘User’ and ‘Password’ fields in Configuration -> Proxy Server.

Proxy with Kerberos Authentication

CodeScene supports proxy servers with Kerberos authentication.

As long as you have a valid TGT ticket in your system’s Credentials Cache, CodeScene should be able
to authenticate with your Proxy Server.

This is usually done with kinit command:

kinit <principal_name>

However, TGT tickets have limited validity (usually 24 hours). If you aren’t able to refresh them
automatically, you need to specify proper username (principal) and password in Configuration -> Proxy
Server.

If you don’t want to store username/password in CodeScene you can also create a keytab file and specify
it in login.conf in CodeScene root folder as follows (make sure to put proper principal and keyTab file
path):

com.sun.security.jgss.initiate {
com.sun.security.auth.module.Krb5LoginModule required client=TRUE useTicketCache=true␣

→˓doNotPrompt=false refreshKrb5Config=true
principal=codescene useKeyTab=true keyTab=codescene.keytab;

};
com.sun.security.jgss.accept {

com.sun.security.auth.module.Krb5LoginModule required client=TRUE useTicketCache=true␣
→˓doNotPrompt=false refreshKrb5Config=true
principal=codescene useKeyTab=true keyTab=codescene.keytab;

};

You can learn more about using Kerberos in Java applications here: Use of Java GSS-API for Secure
Message Exchanges Without JAAS Programming:.

Other Authentication Mechanism

If you’re using another proxy authentication mechanism and you’re not able to make it work with
CodeScene, please let us know. We’ll do our best to add support for this authentication mechanism to

4

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jgss/tutorials/BasicClientServer.html

CHAPTER 1. GETTING STARTED

CodeScene.

Offline Mode

If you are unable to provide a proper proxy configuration, you don’t want to let Codescene reach the
Internet, or you simply don’t have an Internet connection for a limited period of time, you still may run
CodeScene in offline mode.

If CodeScene is unable to activate its license or verify the user’s login, it will show an error message
with a checkbox for activating offline mode. Administrators can also turn on offline mode globally in
Configuration.

Offline mode is limited to the period of the current subscription term (billing period). When your current
billing period ends, CodeScene needs Internet access to verify your license. If you need to run in offline
mode for an extended period of time, you will have to pay for the whole period in advance.

Please note that offline mode should be regarded as an exceptional use case, either for emergencies or
situations with specific needs. To ensure a smooth experience, users are encouraged to provide proper
configuration. Please contact us if you need more help with network/proxy configuration.

Connection Timeouts

By default, CodeScene uses a 5000 ms timeout for both connection timeout and socket time-
out. You can customize these settings with the LICENSE_CHECK_CONN_TIMEOUT and LI-
CENSE_CHECK_SO_TIMEOUT environment variables. This can be useful if you’re running Code-
Scene in a high-latency environment or in permanent offline mode.

You can also enforce a hard timeout on the whole duration of license check request with LI-
CENSE_CHECK_TOTAL_TIMEOUT environment variable. If you don’t specify total timeout com-
puted value 1.5 * (connection timeout + socket timeout) is used as a default. Total timeout gives you a
complete control over the license check duration. You cannot achieve this using just connection timeout
and/or socket timeout. The main difference is in inability to control DNS resolution time using either
connection or socket timeout.

1.2 Installation

1.2.1 Run CodeScene from the Command Line

The easiest way to get CodeScene up and running is by launching the standalone JAR:

java -jar codescene.standalone.jar

This will launch a web application that listens on port 3003 (you can override that by setting a different
port through the environment variable CACS_RING_PORT.

CodeScene will create a local database for the analysis configurations. By default this database is
created in your working folder (that is, the directory where you run CodeScene). You can override this
default and provide a custom path through the environment variable CODESCENE_DB_PATH. Note that
you need to specify a complete file name. As an example, if you specify /User/Services/CodeScene/
configuration, CodeScene will create a persistent database file named /User/Services/CodeScene/
configuration.mv.db.

Once you’ve launched the codescene.standalone.jar you just point your web browser to localhost:3003 to
access CodeScene.

5

https://stackoverflow.com/questions/7360520/connectiontimeout-versus-sockettimeout
https://stackoverflow.com/questions/7360520/connectiontimeout-versus-sockettimeout

CHAPTER 1. GETTING STARTED

1.2.2 Configure the available Memory

RAM memory is a critical resource for CodeScene. In most cases 4G RAM is more than enough, but
if your codebase has large files (we mean really large, like +30,000 lines of code) you may need more
memory to run the X-Ray analyses.

Note that Java’s virtual machine has a system dependent maximum that is typically lower than the total
RAM available. That means you need to specify a higher threshold yourself when starting CodeScene.
You do that by providing the -Xmx flag to java.

Here’s an example that shows how to allocate 10 gigabyte of RAM for CodeScene:

java -Xmx10G -jar codescene.standalone.jar

Note that the order of the arguments matter in this case.

1.2.3 Install CodeScene on a Server

A server installation is the recommended way of running CodeScene. You can either run CodeScene in
a Docker image or deploy CodeScene as a Tomcat application as described in the next section.

Run CodeScene in Tomcat

CodeScene is delivered as a WAR file (Web application ARchive). We recommend that you deploy it
using Tomcat (https://tomcat.apache.org/index.html).

Specify a file folder for the database

CodeScene uses an embedded database. That means, you don’t have to install any database or drivers
yourself. However, you need to specify a path to a file folder where CodeScene is allowed to store its
database. Here’s how you configure Tomcat to do that:

1. Open the file context.xml located under the conf directory in your Tomcat installation.

2. Add an <Environment> tag to context.xml that specifies the path to a folder you want to use for
the database (see the example below).

3. Save context.xml.

Here’s an example on how context.xml may look on a Windows installation (note that you need to modify
the path to fit your environment):

<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
<Environment name="empear.dbpath"

value="C:\\some\\path\\to\\the\\database\\empear.codescene"
type="java.lang.String"/>

</Context>

In case you run on a Linux-based system, you just specify a different path format. For example:

<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
<Environment name="empear.dbpath"

value="/Users/adam/Documents/Empear/deployment/empear.codescene"
type="java.lang.String"/>

</Context>

NOTE: Please ensure that Tomcat has write access to the folder you specify.

6

https://tomcat.apache.org/index.html

CHAPTER 1. GETTING STARTED

DB username and password

Optionally, you can specify a custom username and password to access the database. By default, Code-
Scene uses the ‘sa’ user with an empty password.

Add empear.dbuser and empear.dbpassword to the Context environment properties to customize DB
username/password.

Deploy the codescene.war

Once Tomcat is up and running, with your modified context.xml, you just copy the codescene.war to
the webapps folder in your Tomcat installation.

Access CodeScene

By default, Tomcat will launch CodeScene on port 8080 and at the path /codescene/. If you’re logged in
on the server, you access the application on http://localhost:8080/codescene/login. You should see the
activation screen in your web browser (see Fig. 1.1).

Fig. 1.1: The first time your login you are prompted to activate the application.

Enter the credentials you received in your license file. You’re now ready to login (see Fig. 1.2).

The first time you login, you use the same credentials to login as you used to activate the application.
That is, give your CodeScene Username as User Name and your CodeScene License Key as Password.

You’re now up and running with CodeScene!

1.2.4 Configure additional users

You are granted administration privileges each time you login with your license credentials (note that
you can do that at any time, for example to administrate users).

You can add new users and assign them roles in the global configuration. Users and Roles (page 116)
describes this in greater detail.

7

http://localhost:8080/codescene/login

CHAPTER 1. GETTING STARTED

Fig. 1.2: Once you’ve activated the tool you’re ready to login.

1.3 Run an Analysis

1.3.1 Creating a New Project

Your first step is to create and configure a project. You do that by clicking on the “Create New Project”
button (see Fig. 1.3).

Fig. 1.3: Click on the “Create New Project” button to create a project and configure it for analysis.

Once you click the “Create New Project” button you are prompted with five choices (see Fig. 1.4):

1. Specify Paths if you plan to analyze just one or two repositories and enter the paths manually.

2. Scan Directory to auto-import multiple repositories into your analysis project.

3. Specify Remotes let you specify Git URLs (e.g. to GitHub) and CodeScene automatically clones
the repositories.

4. Clone Existing to copy an existing analysis configuration into a new configuration. This is useful
if you want to provide different analysis views, for example for variying time periods, for the same
codebase.

5. Use Google Repo to let the Repo tool manage your repositories based on a remote manifest.

If you chose to Specify Paths, just type (or copy-paste) the path to your local Git repository clones. You
can add as many repositories as you need.

8

CHAPTER 1. GETTING STARTED

Fig. 1.4: Specify the paths to the Git repositories you want to analyze.

Once you click “Continue”, you arrive at the “Project Details” page (see Fig. 1.5). There are a number
of important configuration options in this step. The Configuration (page 98) include advice on how you
select an analysis period. When in doubt, specify the earliest possible starting date as indicated in the
help text.

NOTE: It’s important that the Analysis Results file folder that you specify is writable for the Tomcat
user; all analysis result content will be stored there.

Once you’ve created the project you’ll arrive at its configuration details. And yes, there’s a lot, really
a lot, of configuration parameters. The good news are that you normally don’t have to change any of
these parameters since they all have sensible defaults. However, you want to look at your Analysis Plan.
Go to the “Analysis Plan” configuration as shown in Fig. 1.6 and specify a suitable interval, for example
once every night.

From now on, CodeScene will run all analyses automatically according to your plan. However, you
probably don’t want to wait for the next scheduled run to get results on your codebase. That’s why
CodeScene supports a forced analysis as described in the next section.

1.3.2 Force an Analysis

CodeScene lets you run an analysis on demand. Just go to the dashboard and press the Run button as
illustrated in Fig. 1.7.

1.3.3 Run a Retrospective

CodeScene also includes the option to run an analysis tailored to a Retrospective. This feature is located
on the “History” tab of your analysis project as illustrated in Fig. 1.8.

For a detailed description of the use cases for Retrospectives, read the article The Happy Marriage of
Retrospectives and Software Evolution.

1.3.4 Find your Way Around

We’ve worked to make CodeScene as easy as possible for you to use. Basically, you just need to remember
three things:

1. Click the cogs button of your project (see Fig. 1.9) to access details, configuration, and to force
analyses.

2. Click on the tile representing your project to inspect your analysis results.

9

http://empear.com/blog/happy-marriage-of-retrospective-and-software-evolution/
http://empear.com/blog/happy-marriage-of-retrospective-and-software-evolution/

CHAPTER 1. GETTING STARTED

Fig. 1.5: The detailed configuration lets you specify analysis period and a result path.

Fig. 1.6: Your analysis plan specifies how often an analysis is run.

10

CHAPTER 1. GETTING STARTED

Fig. 1.7: Press the Run button to force an analysis.

Fig. 1.8: A retrospective lets you analyze the development activity in the past sprint/iteration.

Fig. 1.9: The cogs button in the project tile takes you to the project details and configuration.

11

CHAPTER 1. GETTING STARTED

3. Click on the “CODESCENE” logo in the top-left corner to return to the main screen, should you
ever get lost.

1.4 Resolve Developer Aliases

The social metrics need to identify each developer that contributes code. Unfortunately, it’s common
that developers have multiple Git aliases, which will bias the social metrics.

CodeScene provides two solutions to this problem. The simplest is to use the Developer identity mapping
interface. (See Developers and their Aliases: Mapping Version-Control Names to People (page 112).)

CodeScene also supports Git mailmaps and will automatically use them if they are present. To use
mailmaps, add the .mailmap file to the root of your repository. It specifies a mapping from multiple
aliases to one for each developer as shown in Fig. 1.10.

Fig. 1.10: Resolve aliases through a mailmap.

Note that mailmaps operate at a lower level, so changes in mailmaps will not be visible in the Developer
identity mapping interface.

Read the Git Documentation on mapping authors for a description on how to configure the .mailmap.

1.5 Use a Reverse Proxy for HTTPS Support

CodeScene doesn’t implement HTTPS support itself. Instead we recommend that you put a reverse
proxy in front of the application if you need encryption. We recommend Nginx as the reverse proxy. The
Nginx website provides documentation on configuring Nginx for HTTPS.

Here is a brief example of an Nginx proxy configuration:

http {

server {
listen 80;
server_name codescene.example.com;
location / {

return 301 https://$host$request_uri;
}

}

server {
listen 443 ssl;
server_name codescene.example.com;

ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;
(continues on next page)

12

https://git-scm.com/docs/git-shortlog#_mapping_authors
https://nginx.org/en/download.html
http://nginx.org/en/docs/http/configuring_https_servers.html

CHAPTER 1. GETTING STARTED

(continued from previous page)

ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;

location / {
proxy_pass http://localhost:3003;
proxy_redirect http:// $scheme://;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

}
}

The proxy_redirect used above will rewrite all HTTP redirects from upstream to the current scheme, ie
HTTPS. The browser will then receive the correct scheme directly, avoiding unnecessary round-trips.

There is also a Docker-based sample project that provides CodeScene wrapped by an Nginx reverse proxy
with a self-signed certificate. It composes a CodeScene container and an Nginx container using a small
docker-compose.yml file.

1.6 Display A Monitor Dashboard

Use CodeScene’s monitor view to display an auto-updated dashboard with the status of your codebase.

1.6.1 View the Monitor Dashboard

CodeScene presents a high-level monitor view that displays the key metrics in your codebase (see Fig.
1.11). Present it on a TV or a big screen in the office and share the automatic updates with your team.

Fig. 1.11: The monitor dashboard gives you a high-level overview of your codebase.

The monitor dashboard is automatically updated with the latest analysis results.

You access the monitor dashboard from the “History” view of your project configuration (see Fig. 1.12).
Please note that you need to have the role “Full Read-only Access” to view the dashboard, so please
create a dedicated user for the monitoring as described in Users and Roles (page 116).

13

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_redirect
https://github.com/empear-analytics/docker-codescene-nginx-self-signed-ssl

CHAPTER 1. GETTING STARTED

Fig. 1.12: Access the monitor dashboard from the History view in the project configuration.

1.6.2 Supervise your Feature Branches

CodeScene presents an additional monitor view that is continuously updated with the status of your
ongoing work on different feature branches. Present it on a TV in the office and use the information to
drive code inspections and highlight potential delivery risks, as shown in Fig. 1.13.

Fig. 1.13: Predict the delivery risk of each branch.

The branch monitor displays all branches that haven’t been merged yet.

Launch the branch monitor form the history view as shown in Fig. 1.14.

1.7 Upgrade Your License

1.7.1 Upgrade from an Expired License

CodeScene will automatically prompt you for a new license once an existing license expires. Just enter
your new credentials and everything will be up and running again. All your analyses and user configu-
rations are preserved so you can login with any user after the license upgrade.

14

CHAPTER 1. GETTING STARTED

Fig. 1.14: Launch the branch monitor

1.7.2 Upgrade from a Previous License

You may already have an activated instance of CodeScene running. To upgrade from a trial license (or
to a higher license category):

1. Login as an administrator. Login with the credentials from your existing license to get administra-
tion privileges.

2. Click on ‘Configuration‘ in the top menu as illustrated by Fig. 1.15.

3. Enter the new license credentials you received from Empear.

4. Press the Update License button and your new license becomes activated.

Fig. 1.15: Enter your new license credentials on the Configuration page.

15

Chapter 2

Guides

These guides walk you through specific features and aspects of CodeScene Enterprise Edition. They are
divided into Technical, Architectural, and Social guides.

2.1 Technical

2.1.1 Hotspots

Hotspots are the workhorse of software analyses and our recommended starting point as you explore
your codebase.

What is a Hotspot?

Your development activity tends to be located to relatively few modules as illustrated in Fig. 2.1. A
Hotspot analysis helps you identify those modules where you spend most of your time. This is information
you use to improve the parts that really matter. The parts where you’re likely to get a return on your
investment.

Fig. 2.1: The dashboard gives you a high-level overview of the Hotspot activity in your code.

A hotspots is complicated code that you have to work with often.

Explore the Hotspot Activity

CodeScene lets you explore the overall Hotspot activity in your code. These Hotspots are calculated
from two different data sources:

16

CHAPTER 2. GUIDES

1. We use the lines of code in each file as a proxy for complexity.

2. We use the change frequency of each file as a proxy for the effort you’ve spent on that code.

You want to look for an overlap between the two metrics. That’s why CodeScene presents an easy to
explore, interactive visualization of your hotspots. Fig. 2.2 shows an example from the Visual Studio
Code codebase.

Fig. 2.2: Hotspots in the Visual Studio Code codebase.

The Hotspot visualization makes it easy to identify the parts of your code where most development effort
is spent. In a larger codebase you want to let CodeScene identify your refactoring targets. Let’s see how
that’s done.

Focus on your Refactoring Targets

To prioritize your hotspots, CodeScene employs algorithms that look at deeper change patterns in the
analysis data. The rationale is that complicated code that changes often is more of a problem if:

1. The hotspot has to be changed together with several other modules.

2. The hotspot affects many different developers on different teams.

3. The hotspot is likely to be a coordination bottleneck for multiple developers.

This algorithm allows CodeScene to rank and prioritize the hotspots in your codebase as illustrated in
Fig. 2.3.

The red hotspots are the ones you want to focus on improving first. Improvements to those parts are
likely to give you a large return on your investment.

Once you’ve addressed those hotspots, the yellow hotspots become interesting as well. A yellow hotspot
is likely to be a real problem as well, albeit not as severe as the red category.

Finally, note that the prioritized Refactoring Targets are accessible as a plain list too in order to give you
an overview, as shown in Fig. 2.4. This list is identical to the information highlighted in your hotspot
visualization above.

Shrink the Problem Space with Main Suspects

The ranked list presented as Refactoring Targets is based on probabilities; We cannot guarantee that
the code represents a true problem, but it’s likely to be one. And, best of all, that data is based on how
your developers have worked with the system so far.

17

CHAPTER 2. GUIDES

Fig. 2.3: CodeScene prioritizes the Hotspots in your code.

Fig. 2.4: View the list of your refactoring targets.

18

CHAPTER 2. GUIDES

The main advantage of using the Refactoring Targets as a guide to improvements is that you’re able to
narrow down refactorings to a small part of the system. That in turn will give you more time to tackle
larger issues once you’ve made these initial improvements.

Dive into your Hotspots

A large codebase may contain many different hotspots. You will also notice clusters of hotspots, which
may indicate that a whole component or package is undergoing heavy changes.

The Hotspots Activity map in CodeScene lets you explore your whole codebase interactively as illustrated
in Fig. 2.5.

Fig. 2.5: Hotspots show you the activity in your codebase.

The hotspots map is interactive and hierarchical; Each large blue circle represents a folder in your
codebase. That means you can zoom in and out to the level of detail you’re interested in:

• Click on one of the large, blue circles representing a directory to zoom in on its content.

• Click on a Hotspot to view information about it and to access its context menu to run detailed
analyses.

• Click outside the circle representing a zoomed in folder to zoom out again.

• Hover the mouse over a circle to see information about the module it represents.

The most common interaction is to click on a Hotspot to get more details about it as illustrated in Fig.
2.6.

Use the context menu to access the code for inspection, run CodeScene’s X-Ray (see X-Ray (page 32)),
investigate trends (see Complexity Trends (page 27)) and contributors (see Parallel Development and
Code Fragmentation (page 73)).

CodeScene’s hotspot view also lets you view different aspects of your system, as illustrated in Fig. 2.7.

Just click on an aspect to view its data. For example, Fig. 2.8 shows the distribution of programming
languages used in the implementation of a system.

19

CHAPTER 2. GUIDES

Fig. 2.6: Click on a Hotspot to access the context menu.

Fig. 2.7: Switch between different aspects in the hotspot view.

Fig. 2.8: The programming language aspect shows the technical sprawl in your codebase.

20

CHAPTER 2. GUIDES

Use Code Churn as an Alternative Hotspot Metric

Another interesting aspect is Code Churn. By default, CodeScene uses the commit frequency of each file
as the Hotspot criteria; The more changes you’ve done to a file, the higher its change frequency. This
default criteria is supported by several findings from academic research; change alone is the single most
important metric when it comes to quality issues in code. However, there are some rare cases when this
metric becomes biased. One reason is large individual differences in commit style.

Relative Code Churn is an alternative hotspot metric that calculates the amount of change in each file
in terms of Lines of Code. It’s a relative metric since the churn is weighted against the total size of the
code in each file.

Let’s look at some use cases now that you know how the Hotspots analysis works.

Know how to use Hotspots

A Hotspot Map has several use cases and also serves multiple audiences like developers and testers:

• Developers use hotspots to identify maintenance problems. Complicated code that we have to work
with often is no fun. The hotspots give you information on where those parts are. Use that
information to prioritize re-designs.

• Hotspots points to code review candidates. At Empear we’re big fans of code reviews. Code reviews
are also an expensive and manual process so we want to make sure it’s time well invested. In this
case, use the hotspots map to identify your code review candidates.

• Hotspots are input to exploratory tests. A Hotspot Map is an excellent way for a skilled tester
to identify parts of the codebase that seem unstable with lots of development activity. Use that
information to select your starting points and focus areas for exploratory tests.

Use Hotspots in your Daily Work

How well does Hotspots work in practice? Well, it turns out there’s strong scientific support behind the
metric. The research has often focused on bug predictions, which is relevant since bugs are one of the
main issues behind expensive software maintenance.

The book “Your Code as a Crime Scene” (Tornhill, 2015) dives deeper into those research findings to
explain why and how Hotspots work. But let’s just summarize the conclusions in one line: There’s a
strong correlation between Hotspots, maintenance costs and software defects. Hotspots are an excellent
starting point if you want to find your productivity bottlenecks in code.

That means you want to take your Hotspots seriously. Our recommendation is to run a Hotspot analysis
at least once a week. It’s also a good idea to share your findings with your team. Why not gather
everyone around a Hotspot Map every now and then?

2.1.2 Temporal Coupling

Temporal Coupling means that two (or more) modules change together over time. Exploring Temporal
Coupling in our codebases often gives us deep and unexpected insights into how well our designs stand
the test of time.

Understand Temporal Coupling

CodeScene provides several different metrics for temporal coupling. The tool considers two modules
coupled in time:

• if they are modified in the same commit, or

• if they are modified by the same programmer within a specific period of time, or

21

CHAPTER 2. GUIDES

• if they refer to the same Ticket ID in their commit messages.

The temporal coupling graph in CodeScene shows a hierarchical view of your temporal coupling. Hover
over a label in the graph to highlight its dependants as illustrated in Fig. 2.9.

Fig. 2.9: Hover over a file in the temporal coupling graph to see its dependants.

The initial graph is great to spot interesting temporal dependencies (we’ll discuss them soon). CodeScene
also presents a tabular view of the temporal coupling in your system, as illustrated in Fig. 2.10.

Fig. 2.10: The temporal coupling table gives you all the details.

Coupled Entities
Two files that tend to change together over time.

Degree of Coupling
How often the files change together. The first pair in Fig. 2.10 change together 74% of the time.

Average Revisions
This measure is used to filter out temporal couples that don’t pass a configurable threshold. We

22

CHAPTER 2. GUIDES

do not want to consider two files coupled just because they were created in the same commit.

In this guide you’ll see just how powerful Temporal Coupling is. The more experience we get with the
analysis, the more use cases there seem to be. For example, you’ll learn to use the Temporal Coupling
results to:

• Detect software clones (aka copy-paste code).

• Evaluate the relevance your unit tests.

• Detect architectural decay.

• Find hidden dependencies in your codebase.

Explore Your Physical Couples

Why do two source code files change together over time? Well, the most common reason is that they
have a dependency between them; one is the client of the other. Fig. 2.11 shows an example of such a
case.

Fig. 2.11: Temporal sample on unit test.

As you see in the picture above, a unit test tends to change together with the code under test. This is
expected. In fact, we’d be surprised if the temporal coupling was absent - that would be a warning sign
since it indicates that your tests aren’t being kept up to date or aren’t relevant.

A physical dependency like this is something you can detect from the code alone. But remember that
Temporal Coupling isn’t measured from code; Temporal Coupling is measured from the evolution of the
code. That means you’ll sometimes make unexpected findings.

Look for the Unexpected

Always look for unexpected temporal couples. As soon as you find a logical dependency that you cannot
explain, make sure to investigate it. Fig. 2.12 shows an example.

The table in Fig. 2.12 shows a strong temporal coupling between a LinkTagHelper.cs and a Script-
TagHelper.cs. You also see that their unit tests tend to be changed together.

23

CHAPTER 2. GUIDES

Fig. 2.12: Unexpected temporal coupling.

While those two classes seem to solve related aspects of the same problem, there’s no good reason why
a change to one of them should imply that the other one has to be changed as well.

When you find an unexpected change pattern like this you need to dig into the code and understand
why. This is where CodeScene’s X-Ray feature proves invaluable (see X-Ray (page 32)).

As you X-Ray a temporal coupling cluster you’ll often find that there’s some duplication of both code and
knowledge. Extracting that common knowledge into a module of its own breaks the temporal coupling
and makes your code a bit easier to maintain. You see, temporal coupling often suggests refactoring
candidates.

Investigate Temporal Dependencies across Architectural Boundaries

Temporal Coupling is like bad weather - it gets worse with the distance you have to travel. In our code,
it’s a big difference if we need to modify two files located in the same package versus modifying files
in different parts of the system. That’s why you want to look for temporal dependencies that cross
architectural boundaries.

On a side note, some architectures will lead you to exactly those expensive change patterns. The most
notable one is a layered architecture. You will often find that most new features implies modifying the
majority of your layers. Temporal Coupling helps you keep track of it and assess the situation.

Detect Change Patterns Across Repositories

CodeScene’s temporal coupling filters can be used to make it easier to detect changes that ripple across
repository boundaries. However, if you have tens or hundreds of repositories it’s going to be painful to
configure. To solve that CodeScene provides a special view that only focuses on the temporal couplings
that cross repository boundaries, as show in Fig. 2.13.

Fig. 2.13: Detect temporal coupling between repositories.

24

CHAPTER 2. GUIDES

This view provides detailed information on exactly what files in different repositories that have im-
plicit dependencies between them. Again, look for surprising patterns that violate your expectations or
architectural principles.

Once you’ve identified such change patterns you use X-Ray to resolve the coupling on a function level.
Since X-Ray works across repository boundaries, you’re usually able to uncover surprising patterns that
aren’t visible in the code nor the Git repository (see X-Ray (page 32) for more details).

Use Temporal Coupling to predict Omissions

So far you probably got the impression that Temporal Coupling is something to avoid. And you’re right.
At least in the majority of all cases. But there are some situations where you actually wants Temporal
Coupling:

• You want your unit tests to evolve with the code under test.

• You want your documentation to be updated together with the system it describes.

• You have parallel implementations for different platforms.

The final point is particular interesting since it shows one of the main strengths of Temporal Coupling:
you can identify change patterns across different languages and techniques. Fig. 2.14 shows an example
from Roslyn, Microsoft’s open source compiler platform.

Fig. 2.14: Temporal coupling between languages.

If you have expected Temporal Coupling like this then use it to your advantage. Use the knowledge of
your existing development patterns to guide your code reading, commits and to plan your modifications.

Dig Deeper with Sum of Coupling

Sometimes, it may be hard to prioritize if you have a lot of temporal couples in your codebase. In that
case, use the Sum of Coupling results to guide and prioritize amongst your temporal couples.

Sum of Coupling is a measure of how often a specific file in your codebase is changed together with
another file (any other file). The idea is that files that often changes together with others are significant
from an architectural perspective.

25

CHAPTER 2. GUIDES

Change the Temporal Coupling Thresholds depending on your Codebase

In order to avoid biases like large re-organizations of the codebase, CodeScene lets you configure a
threshold value for the maximum changeset to consider. This is something you specify in the analysis
configuration for your project as illustrated in Fig. 2.15.

Fig. 2.15: Temporal coupling configuration.

The settings in Fig. 2.15 means that the temporal coupling algorithm will respect the following thresholds:

1. Ignore all files with less than 10 revisions/commits since the coupling may be accidental.

2. Ignores all temporal couples that haven’t co-evolved in at least 10 shared commits since the coupling
trend isn’t strong enough yet.

3. Ignores all temporal couples with less than 50% strength to filter out the most important coupling.

4. Ignores all changesets/commits where more that 50 files were changed together since we want to
limit potential false positives.

You’ll find that the default values are typically good enough for you initial analyses. You typically lower
the thresholds in case you don’t find any temporal coupling. Similarly, you increase the thresholds if you
analyze a large codebase and get too much analysis data.

Finally, please note that CodeScene lets you specify the thresholds for “Temporal Coupling By Commits”
separate from “Temporal Coupling Across Commits”. The rationale is because you typically want to use
lower thresholds when identifying patterns across commits in different repositories.

Complement Your Intuition

If you’re an experienced developer that has contributed a lot of code to a particular project then you
probably have a good feeling for where the most significant Hotspots will show-up. You may still get

26

CHAPTER 2. GUIDES

surprised when you run an analysis, but in general most analysis findings will match your intuitive guess.
Temporal Coupling is different. We developers seem to completely lack all kind of intuitive sense when
it comes to Temporal Coupling.

A Temporal Coupling analysis often gives us deep and unexpected insights into how well our designs
stand the test of time.

2.1.3 Complexity Trends

Complexity Trends are used to get more information around our Hotspots.

Once we’ve identified a number of Hotspots, we need to understand how they evolve: are they Hotspots
because they get more and more complicated over time? or is it more a question of minor changes to a
stable code structure? Complexity Trends help you answer these questions.

Complexity Trends are calculated from the Evolution of a Hotspot

A Complexity Trend is calculated by fetching each historic version of a Hotspot and calculating the code
complexity of those historic versions. The algorithm allows us to plot a trend over time as illustrated in
Fig. 2.16.

Fig. 2.16: A complexity trend sample.

The picture above shows the complexity trend of single hotspot, starting in mid 2015 and showing its
evolution over the next year. It paints a worrisome picture since the complexity has started to grow
rapidly.

Worse, as evidenced by the Complexity/Lines of Code ratio shown in Fig. 2.17, the complexity grows
non-linearly to the amount of new code, which indicates that the code in the hotspot is getting harder and
harder to understand. You also see that the accumulation of complexity isn’t followed by any increase
in descriptive comments. So if you ever needed ammunition to motivate a refactoring, well, it doesn’t
get more evident than cases like this. This file looks more and more like a true maintenance problem.

We’ll soon explain how we measure complexity. But let’s cover the most important aspect of Complexity
Trends first. Let’s understand the kind of patterns we can expect.

27

CHAPTER 2. GUIDES

Fig. 2.17: The ration between complexity and lines of code accumulation.

Know your Complexity Trend Patterns

When interpreting complexity trends, the absolute numbers are the least interesting part. You want to
focus on the overall shape and pattern first. Fig. 2.18 illustrates the shapes you’re most likely to find in
a codebase.

Fig. 2.18: Complexity trend patterns you might find in a codebase.

Let’s have a more detailed look at what the three typical patterns you see above actually mean.

The Pattern for Deteriorating Code

The pattern to the left, Deteriorating Code, is a sign that the Hotspot needs refactoring. The code has
kept accumulating complexity. Code does that in either (or both) of the following ways:

1. Code Accumulates Responsibilities: A common case is that new features and requirements are
squeezed into an existing class or module. Over time, the unit’s cohesion drops significantly. The
consequence of that for our ability to maintain the code is severe: we will now have to change the
same unit of code for many different reasons. Not only does it put us at risk for unexpected feature
interactions and defects, but it’s also harder to re-use the code and to modify it due to the excess
cognitive load we face in a module with more or less related functionality.

2. Constant Modification to a Stable Structure: Another common reason that code becomes a hotspot
is because of a low-quality implementation. We constantly have to re-visit the code, add an if-

28

CHAPTER 2. GUIDES

statement to fix some corner case and perhaps introduce that missing else-branch. Soon, the code
becomes a maintenance nightmare of mythical proportions (you know, the kind of code you use to
scare new recruits).

Complexity Trends let you detect these two potential problems early. Once you’ve found them, you need
to refactor the code. And Complexity Trends are useful to track your improvements too. Let’s see how.

Track Improvements with Complexity Trends

Have one more look at the picture above. Do you see the second pattern, “Refactoring”? A downward
slope in a complexity trend is a good sign. It either means that your code is getting simpler (perhaps
as those nasty if-else-chains get refactored into a polymorphic solution) or that there’s less code because
you extract unrelated parts into other modules.

Now, please pat yourself on the back if you have the Refactoring trend in your hotspots - it’s great! But
do keep exploring the complexity trends. What often happens is that we spend an awful amount of time
and money on improving something, fail to address the root cause, and soon the complexity slips back
in. Fig. 2.19 illustrates one such scary case.

Fig. 2.19: Example on failed refactoring.

You might think this a special case. But let me assure you - during the work on these analysis techniques
we analysed hundred of codebases and we found this pattern more often than not. So please, make it a
habit to supervise your complexity trend; CodeScene will even do it automatically for you, as illustrated
in Fig. 2.20. Those complexity trend warnings are triggered when the code complexity in any part of
your code starts to grow at a rapid rate.

Stable Trends May Indicate Problems Too

The final pattern that I want us to discuss is “Only minor modifications”. You see an example on that
in Fig. 2.21.

29

CHAPTER 2. GUIDES

Fig. 2.20: CodeScene supervises your complexity trends.

Fig. 2.21: Minor modifications example.

30

CHAPTER 2. GUIDES

“Minor modifications” - doesn’t that sound good? Well, you have to put it into context; The reason you
explore a Complexity Trend is because the file is a Hotspot. If a file has become a Hotspot, it means
we’re making a lot of modifications to it. That’s a warning sign.

Even if the code itself doesn’t become worse over time, as evidenced by the trend, all those small changes
are still bound to be expensive and, potentially, high risk. The key to efficient software maintenance is
the opposite: you want to stabilize as much of your codebase as you can in terms of development. If a
piece of code keeps changing, no matter how small those changes are, it’s a sign that either the problem
domain isn’t well understood or the code fails to model it properly.

Taken together, the “minor modifications” pattern in a Hotspot is a sign that you should try to identify
the kinds of modifications you do and then encapsulate them. This step often involves extracting small,
cohesive modules from the Hotspot. The X-Ray feature in CodeScene (see X-Ray (page 32)) can help
you with that by showing you when and where you should focus your efforts.

Get Deeper Insights with Descriptive Statistics

The Complexity Trend view presents three additional charts with descriptive statistics:

1. Max value: This is the maximum complexity value of a single line of code over time. This graph
lets you identify pockets of complexity that need refactoring.

2. Median value: The median is the complexity value that separates the higher half of values from
the lower half. An increase in the median is a sign that your code isn’t just growing in terms of
new lines. Rather, it’s a sign that the existing code is becoming more complicated.

3. Standard Deviation: A standard deviation tells you how much the complexity of individual lines
vary. The lower the standard variation figure, the more alike the lines of code in your program
(probably a good sign).

The descriptive statistics require some training to interpret. But as a rule of thumb, if any trend increases,
that’s a bad sign.

What’s “Complexity” anyway?

All right, we said that Complexity Trends calculate the complexity of historic versions of our Hotspots.
So what kind of metric do we use for complexity?

The software industry has several well-known metric. You might have heard about Cyclomatic Com-
plexity or Halstead’s volume measurement. These are just two examples. What all complexity metrics
have in common, however, are that they are pretty bad at predicting complexity!

So we’ll use a less known metric, but one that has been shown to correlate well with the more popular
metrics. We’ll use indentation-based complexity as illustrated in Fig. 2.22

Virtually all programming languages use whitespace as indentation to improve readability. In fact, if
you look at some code, any code, you’ll see that there’s a strong correlation between your indentations
and the code’s branches and loops. Our indentation-based metric calculates the number of indentations
(tabs are translated to spaces) with comments and blank lines stripped away.

Indentation-based complexity gives us a number of advantages:

• It’s language-neutral, which means you get the same metric for Java, JavaScript, C++, Clojure,
etc. This is important in today’s polyglot codebases.

• It’s fast to calculate, which means you don’t have to wait half a day to get your analysis results.

Know the Limitations of Indentation-Based Complexity

Of course, there’s no such thing as a perfect complexity metric. Indentation-based complexity has a
number of pitfalls and possible biases. Let’s discuss them so that you can keep an eye at them as you
interpret the trends in your own code:

31

CHAPTER 2. GUIDES

Fig. 2.22: Explaining whitespace complexity.

• Sensitive to layout changes: If you change your indentation style midway through a project, you
run the risk of getting biased results. In that case you need to know at what date you made that
change and use that when interpreting the results.

• Sensitive to individual differences in style: Let’s face it - you want a consistent style within the
same module. Inconsistent indentation styles makes it harder to manually scan the code. So please
settle on a shared style.

• Does not understand complex language constructs: There are certain language constructs that
indentation-based complexity will treat as simple although the opposite may hold true. Examples
include list compressions and their relatives like the stream API in Java 8 or LINQ in .NET. On
the other hand, it’s common to add line breaks and indent those constructs as well.

All right, we’re through this guide on Complexity Trends and you’re ready to explore the patterns in
your own codebase. Just remember that, like all models of complex processes, Complexity Trends are an
heuristic - not an absolute truth. They still need your expertise and knowledge of the codebase’s context
to interpret them.

2.1.4 X-Ray

X-Ray gives you Deep Insights into your Code

Hotspots are code with high change frequencies. We know that any improvements we do to a hotspot are
likely to pay-off immediately. However, sometimes those improvements aren’t straightforward; Some of
the worst hotspots we’ve seen are files with several thousands lines of code. Given that amount of code,
where do we start? Are all parts of that file equally important? Are there any functions or methods that
contribute more to the code being a hotspot than others?

Until recently, this is where the CodeScene analyses stopped. After all, we’ve significantly reduced
the amount of code we need to consider as we narrowed down a whole codebase to a single file where
improvements matter. However, we need to do even better and CodeScene’s X-Ray feature fills this gap.

X-Ray is a language-dependent analysis. X-Ray is available for the following programming languages:

32

CHAPTER 2. GUIDES

Language X-Ray McCabe Complexity Biomarkers
C Yes Yes Yes
C++ Yes Yes Yes
C# Yes Yes Yes
Java Yes Yes Yes
Groovy Yes Yes Yes
JavaScript Yes Yes Yes
TypeScript Yes Yes Yes
React (jsx, tsx) Yes Yes Yes
Objective-C 2.0 Yes Yes Yes
Scala Yes Yes Yes
Python Yes Yes Yes
Swift Yes Yes Yes
Oracle PL/SQL Yes Yes No
Kotlin Yes Yes No
Clojure Yes No No
Ruby Yes No No
Visual Basic Yes No No
Erlang Yes No No
Go Yes No No
PHP Yes No No
Apex Yes No No

We’ll continue to add X-Ray and biomarkers support for more programming languages over time. As
always: if you lack support for a language, let us know and we’ll make it happen.

An Overview of X-Ray

X-Ray is an analysis that operates on the function/method level of your code. Thus, X-Ray is able to
provide deep and detailed information on what’s happening inside a Hotspot.

There are three main use cases for the X-Ray functionality:

1. X-Ray lets you make sense of large files and get specific recommendations on the parts to improve.

2. X-Ray provides detailed information on why a cluster of files are temporally coupled.

3. X-Ray recommends re-structuring opportunities on the methods in your Hotspots in order to make
the code easier to understand and maintain.

In the following guide we’ll cover all of these cases. Let’s start with how you can make sense of large
files.

X-Ray calculates Hotspots on a Method Level

A Hotspot analysis is orthogonal to the data it operates on. That is, CodeScene presents hotspots as
individual files, but also on an architectural level as entire components and sub-systems. With X-Ray,
we climb down the abstraction ladder and run a Hotspot analysis on a method level.

A large file is like a system in itself. Some parts remain stable, while other parts of the file keeping
changing as new features are added and bugs get resolved. With X-Ray, you’ll get a prioritized list of the
methods you want to refactor and improve first. This is important since re-designing a large module is
both high-risk and expensive. So instead you want to take an iterative approach to your improvements
and base those improvements on data.

To run X-Ray, go to your Hotspot map, click on the Hotspot and select ‘X-Ray’ from the context menu
as shown in Fig. 2.23.

33

CHAPTER 2. GUIDES

Fig. 2.23: Run X-Ray from the context menu.

X-Ray is run on demand. That is, the first time you execute it on a Hotspot it may take a few seconds
to get the results. Sub-sequent accesses are cheap since we cache the results.

Once you get the results you’ll see that you typically spend more time on some methods than others.
So let’s walk through the X-Ray results and look at the individual pieces. Have a look Fig. 2.24 as a
starting-point.

Fig. 2.24: The starting point in an X-Ray analysis.

Fig. 2.24 shows the results of an X-Ray analysis. We see that our hotspot is a method named CreateIn-
voker, which consists of 193 lines of code. You also see that CreateInvoker has a Cyclomatic Complexity
of 22, which is a fairly high number. Thus, the method represents complicated code that you also have
to work with often.

Methods like this are exactly where you’d like to focus your refactoring efforts; The high change frequency
of the method indicates that improvements are likely to pay-off immediately. And the lines of code and

34

CHAPTER 2. GUIDES

complexity numbers gives you a sense of the effort you need to invest to make the necessary improvements.

But X-Ray gives you more information. As you see in the table above, CodeScene also lets you run
a Complexity Trend analysis. In this case, the trend analysis will show the complexity growth of an
individual method. Look at the results of those trends to determine if the X-Ray hotspot represents a
method that we’ve already started to refactor or, the more common case, represents code that continues
to degrade in quality.

A Note on Overloaded Methods

Some languages like C++, C#, and Java let you use the same function name for different implementa-
tions. In that case, X-Ray will combine all overloads with the same name into a single unit of measure.
That is, if you have functions with the signature f(int) and f(string) they will be combined in the analy-
sis. This approach typically gives you better results since the overloaded functions are part of the same
logical unit of design and you want to analyze them as such.

CodeScene includes a count on the total number of methods to highlight such overloads, as shown in
Fig. 2.25.

Fig. 2.25: X-Ray highlights the total number of methods behind each overloaded hotspot.

Interpret Cyclomatic Complexity as part of the Evolutionary Metrics

The cyclomatic complexity measure included in X-Ray doesn’t stand on its own. Just because some code
is complex doesn’t mean it’s a problem. However, when we combine a complexity measure with change
frequencies – like X-Ray does – we get information we can act upon since the code complexity is put
into context.

CodeScene includes its cyclomatic complexity metric as a supplement to the other information as a
decent approximation of code quality. As a rule of thumb, any cyclomatic complexity value above 10
is likely to be problematic. A cyclomatic complexity beyond 25 is likely to hint at a true maintenance
nightmare. But again, use the complexity value as a guide, not as an absolute truth.

Cyclomatic complexity also helps you make refactoring decisions in the sense that you get a rough idea
on how hard the code will be to test. Each branch in your functions add to their complexity value and,
as a direct consequence, to the testing efforts.

X-Ray calculates Temporal Coupling between Methods

As you X-Ray a Hotspot, CodeScene also looks for temporal coupling between individual methods in
that file. This is information that helps you identify unexpected change patterns. Let’s look the example
in Fig. 2.26.

Fig. 2.26 shows that two methods, CreateInvoker and Invoke_UsesDefaultValuesIfNotBound changes
together in 60% of all changes. That is, every second time you change one of these methods there’s a
predictable change to the other one.

You use the Temporal Coupling results as input to your refactoring efforts. For example, in the example
above, you probably want to have a close look at both methods to see why they are so strongly coupled

35

CHAPTER 2. GUIDES

Fig. 2.26: X-Ray calculates temporal coupling between the methods in your Hotspot.

in time. Often, there’s either a leaky abstraction or a fair chunk of duplicated logic in either part of the
code.

X-Ray lets you look into Temporal Coupling Clusters

Temporal Coupling is one of the most powerful software analyses in our arsenal. A temporal coupling
analysis often highlights unexpected change patterns in our codebase and provides us with important
information that we cannot deduce from the code alone. However, temporal coupling has also been one
of the hardest results to act upon.

Think about it for a minute. Let’s say that you investigate some temporal coupling results and identify a
cluster of 10 files that tend to change together. Now, how do you uncover the reason for this coupling in
time? Well, in more complex cases you need to compare the code and walk through the historic revisions
to know which parts of the files that are responsible for the coupling. This can be painful, particularly
for large files that are low on cohesion. Enter X-Ray for temporal coupling.

With X-Ray, all of these steps are completely automated. You just click on a file in the temporal coupling
visualization and select ‘X-Ray’ from the context menu as illustrated in Fig. 2.27.

Fig. 2.27: X-Ray lets you investigate temporal coupling clusters in detail.

Once X-Ray is done, you’re presented with a dependency wheel on method level. Have a look the
dependency wheel in Fig. 2.28 and I’ll walk you though the details.

The dependency wheel in Fig. 2.28 is an interactive visualization. As you see in the example above,

36

CHAPTER 2. GUIDES

Fig. 2.28: The dependency wheel shows the temporal coupling between methods.

37

CHAPTER 2. GUIDES

when we hover over the part that represents the method RendersLinkTagsForGlobbedHrefResults, we see
that the method is coupled in time to six other methods located in a different class. This information is
powerful: now we’ve limited the amount of code you need to inspect in order to improve the design and
break this expensive change pattern.

Find change patterns across repository boundaries

Since CodeScene’s analyses are language neutral it can identify implicit/hidden change patterns between
code implemented in different languages. But CodeScene can go an extra mile: it can even uncover
such change patterns when the different files are located in separate Git repositories! Take a look at the
X-Ray results in Fig. 2.29.

Fig. 2.29: X-Ray works across multiple repositories.

As you see in the preceding figure, X-Ray works across Git repository boundaries to identify the functions
responsible for the temporal coupling. This is a powerful analysis that is particularly useful to:

• Microservices: Implicit dependencies across service boundaries is problematic since it couples the
life cycle of different services to each other. Use CodeScene to detect and X-Ray such dependencies.

• Producer/Consumer : The preceding example is a modern variation of the client-server pattern.
Use X-Ray to learn about the change pattern in a complex, multi-repository project.

• Inter-Team Coordination: In large organizations different teams tend to be responsible for the
code in different repositories. Using X-Ray’s inter-repo analysis lets you uncover expensive change
patterns that impact other teams.

Unfortunately X-Ray across repository boundaries doesn’t work by magic; There has to be some mech-
anism to relate different commits to the same logical change set. CodeScene use Ticket IDs for that
purpose, so all you need to do is to configure your Ticket ID patterns and this X-Ray feature will become
enabled.

As a bonus, this feature also works well in the case of differing commit styles; Some organizations prefer
to build their features by many small and incomplete commits. As a consequence, a single commit
contains very little information and there’s usually no temporal coupling between commits. Temporal
coupling by Ticket ID provides a viable alternative here.

38

CHAPTER 2. GUIDES

X-Ray detects Software Clones

Temporal coupling arises for several reasons. It’s also important to note that all coupling isn’t bad. For
example, you’d expect a unit test to change together with the code under test. However, in the case
where you can’t think about any good reason two pieces of code keep changing at the same time you’ll
inevitably find a refactoring opportunity.

One of the most common reasons for unexpected temporal coupling is a dear old friend: copy-paste. In
fact, copy-paste is so common that we’ve included an analysis of code similarity in X-Ray.

You get to the code similarity analysis by clicking at the result tab for External Temporal Coupling
Details as illustrated in Fig. 2.30.

Fig. 2.30: The Code Similarity analysis let you uncover copy-paste code.

In Fig. 2.30 you see that there are two methods with the same name, but located in different classes, that
have a code similarity of 98%. You want to use this data as a starting point. If you could encapsulate
that shared logic in a separate method that you re-use between the two classes your temporal coupling
will go away. Your application will become a little bit easier to maintain.

A word on Software Clone Detection

Copy-paste detection isn’t exactly a new technique. However, it’s still far from mainstream in the software
industry. One reason that copy-paste detectors haven’t caught on is because they fail to prioritize their
findings in a sensible way.

If you look at studies of large codebases, you’ll learn that around 5-20% of all large codebases represents
duplicated logic to some degree. That’s quite a lot. There’s simply no way you can start to refactor
that amount of code and hope to get a return on that investment. In fact, most of that duplicated code
doesn’t matter. So how can we find the software clones that limit out ability to maintain the system?

CodeScene’s X-Ray solves this dilemma. By combining copy-paste detection with temporal coupling we
know that the identified software clones matter. For example, if you look at the example above, you’ll
see that the two methods with a code similarity of 98% are changed together in one third of all cases.
That is, with X-Ray you’ll find the software clones that actually matter. This lets you prioritize the
improvements that you do while still ensuring that you get a real return on those refactoring investments.

Follow the Restructuring Recommendations

Empear’s CodeScene is the first ever software analysis tool that implements a proximity analysis. The
X-Ray findings present the proximity results as a set of recommendations on how to re-structure the
methods in a Hotspot in order to make the code more readable. Let’s start by understanding the concept
of proximity and why it matters to our ability to maintain code.

The proximity principle focuses on how well organized your code is with respect to readability and
change. You use proximity both as a design principle and as a heuristic to evaluate the cohesion and
structure of existing code.

39

CHAPTER 2. GUIDES

The principle of proximity is a concept from Gestalt psychology. The Gestalt movement pioneered
principles on how we make sense of all chaotic input from our sensory systems. We need to understand
the Gestalt principles if we want to optimize our code for readability. Remember, we use the same brain
to interpret code as we use to make sense of the physical world.

Fig. 2.31: An illustration of the Principle of Proximity where our brain forms groups of related objects.

Within Gestalt psychology, the principle of proximity specifies that objects or shapes that are close to
one another appear to form groups as illustrated in Fig. 2.31. If we translate this to software, it means
that readable code is structured in a way that lets our brain understand parts of the source code file as
a whole. The main reason is because we want our code to support our change patterns: code that is
expected to be changed together should be close. Such a code structure serves as a powerful reminder
to both the programmer and, more important, the code reader that a set of functions belong together.

CodeScene measures proximity based on your change patterns (aka internal temporal coupling). You see
an example on a proximity analysis in Fig. 2.32 from the implementation of the Clojure programming
language.

The highlighted recommendation in Fig. 2.32 shows two functions, hash-map and array-map, that are
frequently changed together. That is, they are temporally coupled. However, if you look at the imple-
mentation in the Clojure project you’ll see that there are thousands of lines of code between hash-map
and array-map. This is bad news for a maintenance programmer because it’s so easy to miss an update to
one of the functions. A simple, low-risk refactoring is to just move those two functions next to each other.
That simple change lets the code signal that the functions belong together. In addition it dramatically
increases the chances that a bug fix to one of the functions is applied to the other function too.

So what metric do we use for proximity? If you look at Fig. 2.32 you see that there’s a Total Proximity
column in the analysis results. The proximity values specify the distance between the related functions.
The unit of measure is the number of intermediate functions between the related parts. In our example
with hash-map and array-map Fig. 2.32 shows that there’s a total proximity of 299. That means that
there are 299 (!) functions separating the implementation of hash-map from its related temporally
coupled array-map.

Know the limitations of Method-level analyses

CodeScene tracks renamed content. That is, if you move or rename a file, we make sure to fetch its past
history even if you’ve renamed the file multiple times. We implement a similar mechanism for X-Ray

40

CHAPTER 2. GUIDES

Fig. 2.32: The Proximity Analysis recommends re-structuring of the methods in a Hotspot.

too. X-Ray will track and analyze the history of renamed methods/functions. . . except when it won’t.
Let’s elaborate on that so that you know the possible corner cases.

First of all we have a philosophical question here. Let’s say you decide to refactor parts of your code.
You simplify some parts of it and rename a few functions. Now, when is a function renamed and when
is it actually a new function that replaces an old one? This distinction isn’t clear.

X-Ray resolves this dilemma by introducing a set of heuristics for its rename detection:

1. We consider a method/function renamed if its name is changed without any changes to the method
body.

2. We also consider a method renamed if its name is changed and their are minor modifications to its
method body.

3. X-Ray doesn’t do rename detection for methods that it considers too small (e.g. single line get-
ters/setters).

So if you want to ensure that your renamed methods are being tracked past the rename, please make sure
that you do the renaming in one commit and possible method body modifications in another commit.
It’s usually a good refactoring practice anyway.

In general, X-Ray tries to do the most sensible thing. Without the rules above, you’d risk false positives
in your analysis results. That’s prevented now at the possible cost that X-Ray will miss the occasional
rename. This is a better trade-off since if the renamed function is a Hotspot, it will most likely continue
to change at a rapid rate and X-Ray detects that anyway.

Increase the Depth of the Analysis

By default, X-Ray will look at a maximum of 200 revisions. In most codebases that’s more than enough.
So why put a limit on it? Well, there are projects that have been around for a long time and their top
Hotspots may well have over thousands of commits. To X-Ray that data will take quite some time. In
addition, the most interesting patterns are likely to be in the recent evolution of the Hotspot.

Most of the time this is the behavior that you want. However, in case you want to dive deeper and
X-Ray the complete evolution of a Hotspot you need to instruct CodeScene to do that. This choice is a
simple matter of configuration as illustrated in Fig. 2.33.

41

CHAPTER 2. GUIDES

Fig. 2.33: The project configuration lets you X-Ray all revisions of a Hotspot.

2.1.5 Code Biomarkers–A Virtual Code Reviewer

In medicine, a biomarker is a measure that might indicate a particular disease or physiological state of
an organism. CodeScene’s biomarkers does the same for code. Combined with biomarker trends, this
gives you a high level summary on the state of your hotspots and the direction your code is moving in.

Fig. 2.34: The Code Biomarkers shows the status of your hotspots at a glance.

CodeScene’s biomarkers are like an extra, virtual team member that constantly reviews your code. Let’s
look into the biomarkers.

The Ideas Behind Code Biomarkers

We at Empear make heavy use of CodeScene ourselves. We use the tool as part of our services. Over the
past years we have analyzed hundreds of different codebases, and there are some patterns that we have
seen repeated over and over again. Thus, we started to implement support in CodeScene to auto-detect
those patterns, and we called the feature biomarkers.

The biomarkers name requires a brief explanation. In general, we wanted to avoid terms like “quality” or
“maintainability” since they are easy to game and, more serious, suggest an absolute truth. Instead we
find that it’s the trend that’s most important: is the code evolving in the desired direction? In addition,
an algorithm, no matter how smart, can only take us so far; at some level we want a human in the loop,
and the code biomarkers are there to support that human by priming them on what to look for in the
specific hotspot. Let’s look at some examples.

42

CHAPTER 2. GUIDES

Explore your Code’s Biomarkers

If CodeScene has biomarker support for your language (see X-Ray (page 32) for a list of supported
languages), you will get a high-level trend on your dashboard as shown in Fig. 2.35.

Fig. 2.35: Code Biomarkers summary on the analysis dashboard.

As you see on the dashboard, code biomarkers are scored from A to E where A is the best and E indicates
code with severe potential problems. In this example, we see that this particular codebase has improved
over the past month as indicated by the move from a D score to a C.

Biomarkers Present Actionable Metrics

Before we move on, how do we know that the biomarkers and scores are relevant? Well, the biomarkers
are built on top of CodeScene’s other metrics and behavioral data. That means we only score the
prioritized parts of the codebase, the one’s that are most likely to impact development and maintenance
costs as show in Fig. 2.36.

Fig. 2.36: Biomarkers are built on top of CodeScene’s prioritized hotspots.

Using this principle, Code Biomarkers fill a number of important gaps:

• Bridge the gap between developers and non-technical stakeholders: The biomarkers visualization
provides information to managers that help decide on when to take a step back, invest in technical
improvements, and measure the effects.

43

CHAPTER 2. GUIDES

• Get immediate feedback on improvements: The biomarker trends gives you immediate and visual
feedback on the investments you do in refactorings.

• Share an objective picture of your code quality: The biomarker scores are based on baseline data
from throusands of codebases, and your code is scored against an industry average of similar
codebases.

• Get suggestions on where to start refactorings: The code biomarkers hint at specific problems in
each file, which also suggests which refactorings that could be used to address the findings.

Let’s demonstrate those properties by having a more detailed look at biomarkers in Fig. 2.37.

Fig. 2.37: Detailed Biomarkers for a specific project.

The biomarkers in Fig. 2.37 provide detailed indications for each prioritized hotspot. We note that the
file QueryTestBase.cs has been sucessfully refactored since last month. We also note the warning sign
for GraphUpdatesTestBase.cs (see the yellow marker to the lef in the figure), which has degraded from a
D to an E.

We get more details when we click on the biomarker button, the lab bottle, next to each hotspot as
shown in Fig. 2.38.

Fig. 2.38: Detailed Biomarkers for a specific hotspot.

Use the detailed biomarkers to initiate refactorings. For example, the next step in this case would
be to simplify the Brain Methods OnModelCreating and AssertKeys by applying the Extract Method
refactoring repeatedly to reveal the overall intent of those methods. The next step could be to address the
reportedly low cohesion; CodeScene suspects that QueryTestBase.cs has three separate responsibilites,
so splitting the file into three separate modules will improve the design and limit the cognitive load on
the developers who work with the code. Finally, we could investigate the code duplication reported by a
biomarker. Duplicated code usually hints at one–or more–missing abstractions that we could introduce.
Hence, we recommend to run an X-Ray analysis on the file to get more insights now that we know what
to look for. We show an example of a QueryTestBase.cs X-Ray in Fig. 2.39.

44

CHAPTER 2. GUIDES

Fig. 2.39: Use X-Ray to follow-up on the biomarkers.

We’ll return to our discussion on how to act upon the biomarker indications towards the end of this
guide. Before we get there, it’s important to note that CodeScene includes social biomarkers too. You
see an example on this in Fig. 2.40.

Fig. 2.40: Social Biomarker indication found in a specific hotspot.

In this case, CodeScene noted that seven separate developers have worked on the code over the past
weeks, and this fragmentation (see Parallel Development and Code Fragmentation (page 73)) puts the
code at risk for defects and unexpected feature interactions. A high developer congestion might also
make the code harder to understand since any mental models we have of the code are likely to become
outdated fast due to the massive parallel work on the code.

Display the Biomarkers Monitor

CodeScene presents an additional monitor view where the biomarkers are continuously updated with
the status of your ongoing work. Present the view on a TV in the office and use the information to
communicate a shared understanding on the state of the codebase as shown in Fig. 2.41.

Auto-Detect Degrading Biomarkers with Continuous Integration

CodeScene’s delta analysis lets you supervise your biomarkers as part of a continuous integration pipeline.
This lets you auto-detect files that seem to degrade in quality through issues introduced in the current

45

CHAPTER 2. GUIDES

Fig. 2.41: Display an always up-to-date view of your biomarkers.

commit or pull request. See Use a Delta Analysis to Save Time in Code Reviews (page 85) for more
details.

The Future of Code Biomarkers

This is an early release of the biomarkers concept. We have been using them internally for our services
and found that the biomarkers saves us a lot of time and manual inspections. That’s why we decided to
include them in the product too and share them with you.

We plan to extend the biomarker support to more programming languages. We also have prototypes for
serveral other types of markers that we can detect in the evolution of code, so the concept is likely to
expand over the next releases. In addition, we also plan to provide more detailed trends and information
on each detected biomarker.

As always, if you lack support for a particular language, please let us know and we’ll try to support it.

2.1.6 Code Churn

Code churn is a measure that tells you the rate at which your code evolves. Code churn has several
usages:

• Visualize your development process: Your code churn signature in the diagrams below mirrors the
practices you use to deliver code. You may want to watch out for regular spikes, which may hint
at a mini waterfall going on in your daily work

• Reason about delivery risks: Code churn is a good predictor of post-release defects. Thus, it’s a
warning sign if you approach a deadline while your code churn increases. That’s a sign that the
code gets more and more volatile the closer you get to your deadline. You want the opposite. You
want to stabilize more and more code the closer you get to delivery.

• Track trends by task: CodeScene lets you inspect the size and impact of your tasks. Use the
information to see if your project management tasks are on an appropriate level or if each one of
them implies a mini big bang in terms of code changes.

CodeScene provides several churn measures. They’re all described in this guide and you typically inves-
tigate all of them to get the overall trend in your codebase.

Use the Commit Activity as the Pulse of your Codebase

The commit activity chart shows the number of commits and contributing authors over time as illustrated
in Fig. 2.42.

46

CHAPTER 2. GUIDES

Fig. 2.42: The commit activity chart.

The number of commits and authors over time is a different kind of churn. This metric will typically
correlate well with your other Code Churn metrics described below. However, you want to look out for
potential productivity issues like an increase in authors without a corresponding increase in commits
and churn; Such a trend often indicates that you’ve more programmers contributing than the software
architecture (and/or organization) can support.

Correlate Trends in the Number of Contributors with the Churn Metrics

The Active Contributors trend shows the number of authors in the codebase over time. CodeScene
calculates this information by looking at the first and last recorded contribution times for each author.
This lets you view a trend as illustrated in Fig. 2.43.

Fig. 2.43: The number of active contributors over time.

The contribution trend is particularly interesting when correlated with the other churn trends. You may
also want to compare the contribution trend with the system complexity trend (see Architectural Analyses
(page 54)). Correlating the number of active contributors to these churn metrics lets you evaluate the
effect (or lack thereof) when a project is scaled up or down.

47

CHAPTER 2. GUIDES

Uncover Long-term Trends in your Code Churn Rolling Average

CodeScene measures two separate churn metrics: the number of added lines of code, and the number of
deleted lines. The values in the graph shows the rolling average of your code churn (rolling average is a
technique to smooth out sudden fluctuations in your data). You configure a time window for the rolling
average in your project configuration.

The main use of these code churn metrics is to reason about delivery risks; If you’re close to a deadline
and have a rising churn, you might want to understand why. After all, an increase in churn means that
the codebase has become more and more volatile. Unless you have an extensive safety net in terms of
tests and continuous deployment techniques, you probably want to stabilize before a release as illustrated
in Fig. 2.44.

Fig. 2.44: Use code churn to reason about delivery risk.

Inspect The Level of your Tasks

It’s a challenge to strike the right level when you partition your work into individual tasks. Large tasks
are hard to reason about and also less predictable to plan. That’s why we generally prefer small and
well-focused tasks.

CodeScene lets you inspect the impact of your project management tasks on the codebase in terms of
both code churn and collaboration (that is, how many authors worked together to solve the task?) as
illustrated in Fig. 2.45.

Fig. 2.45: Inspect the code churn on a task level.

CodeScene uses your Ticket ID to group individual commits into tasks. As you see in Fig. 2.45, CodeScene
also calculates a Lead Time for each task. The lead time is the time that passed between the first and
the last commit referencing a specific task. Note that many tasks tend to be solved in a single commit.
In that case CodeScene doesn’t have the data to calculate a proper lead time. So CodeScene defaults to
one hour in case of a task that’s resolved in a single commit.

48

CHAPTER 2. GUIDES

We recommend that you use the lead time data to track tasks that drift in time. Often, those tasks
suggests requirements that aren’t as well-defined as they could be. You can also use the lead time analysis
to track the effects of process changes in your organization.

2.1.7 Code Age

Code Age is a much underused driver of software design. In this guide we’ll cover how you interact with
the analysis results and how you use the presented information to guide your architectural decisions.

Drive to Stabilize

Code evolve at different rates. As you’ve learned in the Hotspots Guide (see Hotspots (page 16)), some
parts of your codebase tend to change much more frequently than others. The Code Age Analysis gives
you another powerful evolutionary view of your system. It’s a view that helps you evolve your codebase
in a direction where the system gets easier to maintain and more stable.

The age of code is a factor that should (but rarely do) drive the evolution of a software architecture. In
general, you want to stabilize as much code as possible. A failure to stabilize means that you need to
maintain a working knowledge of those parts of the code for the life-time of the system.

How do we measure Code Age?

CodeScene measures code age per source code file (or any content, actually). We define the age of code
as “the time of the last change to the file”. Note that this means any change. It doesn’t matter if you
rename a variable, add a single line comment or re-write the whole module. All those changes are, in
the context of Code Age, considered equal.

This definition is fairly rough and in the future we’re likely to take the amount of change to a file into
account when calculating age. But for now, age is that time since the last change. And the resolution is
months.

Inspect your Code Age Distribution

The age distribution graph shows how much of your codebase that you have managed to stabilize.

The example graph in Fig. 2.46 shows a codebase under heavy development. As you see, 20% of the
source code files have been modified the past month. Here’s how you use this information:

• See how much of the code you manage to stabilize.

• Identify sub-systems that have become commodities.

Let’s discuss these two points. First of all, you want to stabilize as much code as possible. Stable
code means that its quality is known. It also limits the size of the codebase where a developer has to
maintain an active mental model of the code. New code (0-2 months old) is of course where the current
development happens and you expect some activity here; a system that doesn’t change is a system that
no one uses. What you want to look out for is everything in between. That is, the code that’s neither
particularly old nor do we need to work with it on a monthly basis.

The reason we’d like to avoid having code that is neither old nor new has to do with human forgetting.
Such code is old enough that the original programmers are unlikely to remember the details. If we need
to dig into code that we no longer remember well, we pay a high price. So please watch out for a codebase
where you have a flat distribution.

The second use case for Code Age Distribution is to identify commodities. A commodity is code that’s
been stable for a long time. You see an example from the development of the Clojure programming
language in Fig. 2.47.

This is a good starting point; If you have a lot of code, as in the distribution in Fig. 2.47, that you haven’t
modified in years, there’s an opportunity to drive your software architecture in a leaner direction. To do

49

CHAPTER 2. GUIDES

Fig. 2.46: An example of code age distribution.

Fig. 2.47: Code age distribution in Clojure.

50

CHAPTER 2. GUIDES

that we need to get more information. We need to understand where in the codebase those stable parts
are. That information is provided in the Age Ring View that we discuss below. Before we get there,
however, we need to be aware of some possible biases.

Possible sources of Bias in the Age Distribution

As noted above, code age is measured since the time of any change to a file. That means, if you re-
organize your codebase by moving source code files to different folders, your code will appear much
younger than it actually is.

Unfortunately we do not provide a way to counter this bias in the current version of CodeScene. But
please stay tuned for future versions where we’ll solve this.

Identify Stable and Unstable Sub-Systems in the Age Ring View

Fig. 2.48: Annual rings of a tree.

So, the Code Age Distribution told us that we’ve a lot of code that we haven’t modified in a long time.
The Age Ring View lets you identify where those stable parts are.

Think of the Age Ring View as the annual rings of a tree, but for code. You specify a cut-off point for
the age you’re interested in and inspect the resulting view.

You select the cut-off point based on the Age Distribution in your codebase. The cut-off point should
mean something in your context. For example, we noted above the the Clojure codebase has a lot of
code that’s older than two years. Fig. 2.49 hows how we find that code.

Extract Stable Packages as Libraries

Once you’ve found stable packages you may want to consider to extract them as packages. If we transform
stable packages into libraries we get a set of advantages:

• Stable code lets us maintain long-term cognitive models: The developers now only needs to focus
on the API of these packages.

• Minimize cognitive load for new developers: As a direct consequence, new developers have less code
to understand as they enter your codebase. Age is not something that’s visible in the code itself
and it’s thus hard to know if I, as a developer, have to understand that part of the system or not.

51

CHAPTER 2. GUIDES

Fig. 2.49: Stable code in Clojure.

52

CHAPTER 2. GUIDES

• Know where extra tests add most value. You may want to write a set of high-level automated
checks around your extracted packages. Those test scripts would capture your understanding of
the package and ensure your expectations are correct. Since the code under test is stable, your
tests will be stable as well. The reason you have them is so that you can ensure that you don’t
break existing code when you someday have to modify a part that is a known commodity in your
system.

• Know which tests you don’t have to run in each build. Once you stabilize code, you don’t need to
run the unit-, function-, integration-tests for that part in every single build. That means you can
shorten your delivery cycle by ignoring tests in the parts of the system that haven’t been changed
for ages.

Identify Parts That Fail to Stabilize

Sometimes you’ll find a package (component, sub-system, etc) whose parts change at different rates as
in Fig. 2.50

Fig. 2.50: Code that stabilizes at different rates.

Code in the same package/subsystem that change at different rates is a warning sign. It either means
that 1) some of the code is of lower quality and we need to patch it often or 2) the parts model different
aspects of the problem domain.

Our general recommendation is to try to split packages by the age of the elements contained within them.
That is, organize your code by age. Consider the same strategy for larger files that fail to stabilize. Split
their content into several, cohesive files. That way, you’ll get information on what parts of the problem
domain that are volatile and the parts that are stable.

Use Code Age to assess Knowledge Loss

A Code Age analysis has more usages than just software architecture. If you have areas of Knowledge
Loss in your codebase you can use Code Age to assess how severe the loss is. Is the abandoned code a
part that has been under active development recently? In that case, I would worry. If not, things look
better. Sure, you get a knowledge gap with each developer that leaves, but that gap is in a part of the

53

CHAPTER 2. GUIDES

system that you haven’t been working on for a long time. Besides, since that code is so old, it’s also
likely that the original developers, even if they were still present, would have a learning curve themselves.

2.2 Architectural

2.2.1 Architectural Analyses

CodeScene’s architectural analyses lets you run Hotspots, Temporal Coupling and more at the architec-
tural level of your high level design. The results give you the power to evaluate how well your architecture
supports the evolution of your system.

With CodeScene, you get the same information on an architectural level as the file level analyses, as
illustrated in Fig. 2.51. Note that this is information that isn’t available in your code.

Fig. 2.51: High level architectural analyses on the technical and social aspects of code.

This section of the guide walks you through the necessary configuration and gives you some ideas on
how to interpret and act upon the architectural analysis results.

What is an Architectural Component?

An Architectural Component is a logical building block in your system. For example, if you build
a Microservices architecture, each microservice could be considered a logical block. Similarly, if you
organize your code in layers (MVC-, MVP-, MVVM-patterns, etc.), each layer would be a logical block.

An Architectural Component could also be much more coarse. For example, let’s say that you’re inter-
ested in the co-evolution of your application code versus the test code. Perhaps because you suspect that
you spend way too much effort on keeping your automated tests up to date. In that case, you’d define
two Architectural Components: Application Code and Automated Tests.

You’ll learn to define your components in the next section. Before we go there, let’s have a look at the
end result.

As you see in Fig. 2.53, CodeScene presents a hotspot analysis on architectural level. This gives you
a high-level view of how your development activity is focused. You also see that you get the social
knowledge metrics on an architectural level too. We’ll discuss that in more detail later in this guide to
learn how we use them to analyse complex architectures like Microservices.

Define your Architectural Components

You need to configure your Architectural Components in order to enable these analyses, and the Archi-
tectural Components you specify depend upon your architectural style. You may also want to specify

54

CHAPTER 2. GUIDES

Fig. 2.52: An example of architectural components.

Fig. 2.53: High level architectural hotspots analysis.

55

CHAPTER 2. GUIDES

components that help you answer the questions you have. For example, do the change patterns in the
code match the intent of the architecture? Often, the potential for large maintenance savings are found
in these architectural analyses once you spot patterns that violate your architectural principles.

CodeScene offers flexibility in how you define your components. The tool uses glob patterns to identify
the files that belong to a specific component as illustrated in Fig. 2.54.

Fig. 2.54: Configure architectural components by specifying glob patterns for each logical component.

As you see in the picture above, you need to specify a pattern and the name of your component. All
content in your codebase that matches your glob pattern will be assigned to an architectural component
with the name you specified.

Let’s consider the example above to learn more about the format. The configuration in Fig. 2.54 speci-
fies the pattern spaceinvaders/source/sprites/**. That means that all content under the folder spacein-
vaders/source/sprites will be considered as the architectural/logical component Sprites.

In general, you want to match architectural components on the level of the different sub-folders of your
codebase. But you can of course provide much more granular filters and, with the power of glob patterns,
match all files sharing a common extension, or even individual files.

You can also map multiple folders to the same architectural component. A common example on this is
when you want to consider the application code and its associated unit tests as one logical unit. In this
case you’d add a second pattern to the Sprites component in Fig. 2.54: spaceinvaders/test/sprites/**.

Use the Architectural Component Editor

The most common way of defining your architectural components is to use the Architectural Component
Editor. In the “Architecture” tab of your project’s configuration pages, a large button leads to the
Editor.

The Editor provides a visual interface to the files in your project. For this reason, it can only be used
after you run an initial analysis. Once CodeScene is aware of the files in your project, it will provide
you with the same circular visualization used for Hotspots and other analyses. You can zoom in and out
to choose the parts of your project that you want to include in a Component. The colors of the circles
indicate the type of files. A legend is available in one of the tabs of the sidebar:

When you have located a directory or a file that you wish to include in a Component, you have two
choices at the top of the sidebar on the right:

56

CHAPTER 2. GUIDES

Fig. 2.55: CodeScene’s Architectural Component Editor provides a visual interface to your project’s files.

Fig. 2.56: Choose either the pattern for the current directory, or write your own pattern.

57

CHAPTER 2. GUIDES

The most common action here is to click on “Select a component” under the first pattern, which, in
the example above is rails/activerecord/**. This pattern will match all the files and subdirectories in
the activerecord directory. You can either add the pattern to an existing Component, or create a new
Component based on your selection.

The other choice is to write a custom pattern. In this example, if we were only interested in the .yml
files in the activerecord directory, we could create a pattern like this:

Fig. 2.57: A custom pattern that selects all the .yml files inside a directory.

This way, while using the visual interface, you still have the full power of glob patterns. Note that
patterns are validated and must begin with the project root of the corresponding Git repository (rails/
in this example). or with *. The interface will prevent you from entering invalid patterns.

If you make a mistake, you can remove the pattern from the Component:

Fig. 2.58: Remove a pattern

The Architectural Component Editor also comprises a form-based view which you will find by scrolling

58

CHAPTER 2. GUIDES

further down the page.

Fig. 2.59: The Editor also has a form-based view

You can make changes here just like in the visual interface, adding, editing or deleting components and
patterns. Note that when a component contains zero patterns, it is deleted.

Changes are only stored when you click on the “Submit” button at the bottom of the page. Your new
Architectural Components will be used the next time an analysis is run on your project.

Import Architectural Component Definitions from a File

Instead of specifying the patterns manually in the section above, you can import a CSV file with the
definitions. This is a simpler option in a large system where you can script the generation of the CSV
to import:

• Your CSV file must not include a header row.

• The CSV file shall contain two columns: 1. the Component Name and 2. its Glob Pattern.

• The fields in your CSV are separated by commas.

Fig. 2.60 provides an example on a CSV file used to import architectural components.

Fig. 2.60: Import your definitions of architectural component from a CSV file with this format.

The file content above defines five architectural components and maps each one of the to a logical
architectural name. As you see, you can map several folders to the same architectural component. The
Workbench component above is an example on this. As we import the file, CodeScene will generate a
definition for Workbench as illustrated in Fig. 2.61.

Fig. 2.61: Map two separate folders to the same architectural component.

59

CHAPTER 2. GUIDES

System Complexity Trend

CodeScene calculates a trend of how your system, as a whole, has evolved over time.

Please note that you need to enable this analysis; It’s expensive in terms of analysis time, which is why
it’s optional. Fig. 2.62 shows how to enable the trends.

Fig. 2.62: Enable the trend analysis of architectural components in your project configuration.

Once you’ve enabled the architectural trends, CodeScene will calculate an overall view of the evolution
of your system as illustrated in Fig. 2.63.

You use this information to see if the system has stabilized and entered a maintenance phase or if it still
evolves rapidly. You can also correlate the growth patterns to how the staffing has looked over time -
did more people really resulted in a faster growth?

CodeScene also presents a breakdown of the system complexity per architectural component as illustrated
in Fig. 2.64.

Know the Biases in System Complexity Trends

The system/architectural complexity trends don’t take all your historic development into consideration.
The trends are based upon the active amount of code. That is, only the code that’s included in your
repositories today will be considered. More specific, this means that:

• If you have deleted whole files and folders in your codebase it won’t reflect in the trends.

We also want you to be careful when interpreting the results of an analysis that use a shorter time span
than that of the whole repository lifetime. In such a shorter analysis period, only the files with active
development activity are included in the codebase. You’ll still be able to see a trend and reason about
possible complexity growth in your code. However, the absolute numbers are likely to be lower than the
total amount of code; Only files that you have modified are included in the trends.

Interpret the Architectural Analysis Results

The Architectural Analyses lets you focus on logical building blocks rather than individual files. This
allows you to identify architectural Hotspots, as shown in Fig. 2.65.

60

CHAPTER 2. GUIDES

Fig. 2.63: The evolution of the complete codebase.

Fig. 2.64: The architectural trends let you view how the development effort has shifted over the years.

61

CHAPTER 2. GUIDES

Fig. 2.65: Using the hotspot analysis for architectural components.

The architectural analyses also lets you inspect the complexity trends of architectural hotspots. Note
that you need to enable the architectural trends in your project configuration as noted above.

Finally, the architectural analyses also let you identify expensive modification patterns where code
changes ripple through multiple logical components, as seen in in Fig. 2.66.

Evaluate Conway’s Law

CodeScene measures the knowledge distribution on an architectural level too. This gives you a powerful
tool to evaluate how well your architecture aligns with your organization, aka Conway’s Law as illustrated
in Fig. 2.67.

The same analysis also lets you measure the coordination needs on an architectural level. This is useful
to detect sub-systems that become coordination bottlenecks or lack a clear ownership, as illustrated in
Fig. 2.68.

You use this information to find parts of the code that may have to be split into smaller parts to
facilitate parallel development, or, to introduce a new team into your organization that takes on a
shared responsibility.

The high-level analyses are particularly useful if you work on a (micro) service oriented architecture. In
that case you also want to investigate Technical Sprawl, which we discuss next.

Measure Technical Sprawl

One of the big selling points behind Microservice architectures is the freedom of choice when it comes to
implementation technologies. Using a Microservice architecture, each team is free to chose the program-
ming language they think makes the best fit for the problem at hand.

In practice, however, this freedom may lead to a sprawl in programming languages that makes it hard
to rotate teams. It also puts you – as an organization – at risk when the only people who master a
particular technology leaves. Thus, CodeScene provides analyses to measure your technical sprawl, as
illustrated in Fig. 2.69.

The technical sprawl analysis is particularly useful for off-boarding. Let’s say that we want to move a
developer to another project or, worse, someone decides to leave the organization. In that case we run a
pro-active simulation of knowledge loss (see Knowledge Distribution (page 68)) and ensure that we still
have the technical competencies we need within the organization, as illustrated in Fig. 2.70.

62

CHAPTER 2. GUIDES

Fig. 2.66: Temporal coupling between architectural components.

Fig. 2.67: Measure Conway’s Law in your codebase.

63

CHAPTER 2. GUIDES

Fig. 2.68: Find team coordination bottlenecks.

Fig. 2.69: Technical Sprawl shows the main programming language used for each component or service.

64

CHAPTER 2. GUIDES

Fig. 2.70: Combine Technical Sprawl with Knowledge Loss for off-boarding.

65

CHAPTER 2. GUIDES

2.3 Social

2.3.1 Social Networks

The Social Network Analysis gives you a heuristic on the coordination needs between developers on
different teams. The idea is based on Conway’s law - a project works best when its organizational
structure is mirrored in software. Using the Social Network Analysis, you now have a way to ensure that
your organization matches the way the system is designed with respect to the work the developers do.

The Social Network Is Build from How the Code Evolves

The social network paths are mined from how your codebase is developed. You see an example of a
social network in code in Fig. 2.71.

Fig. 2.71: An example of a social network in code.

The network is built by identifying developers that repeatedly work in the same parts of the code. The
more often they work in the same parts of the code, the stronger their link in the network. Note that

66

CHAPTER 2. GUIDES

CodeScene filters developers with weak links since they would clutter the visualization (you can change
the threshold as described in Project Configuration (page 98)).

Define Your Development Teams

The social network lets you identify developers that should be close from an organizational perspective.
The visualization in Fig. 2.71 shows an example of an organization with 8 development teams. If you
hover over a developer, you highlight their peers that tend to work in the same parts of the codebase.
You use this information to evaluate how well your organization supports the way the codebase evolves.

That also means you want to compare your organizational chart with the information in the generated
social code network. Any discrepancies has to be understood.

Align Your Architecture and Organization

In a perfect world most of your communication paths would be between developers on the same team.
That is, the teams have a meaning from an architectural perspective; People on the same team work on
the same parts of the codebase. They share the same context, know each other and have a much easier
time coordinating their work.

However, sometimes the world looks radically different. Have a look at Fig. 2.72.

Fig. 2.72: An example of a social network anti-pattern.

The visualization in Fig. 2.72 shows an organization with severe coordination problems. Since the data
has been made anonymous to protect the guilty, you cannot read the names of the teams or developers.
But you still see that the organization has four teams with a high degree of inter-team coordination
between virtually every developer. In practice, this isn’t an organization with four different teams.
Rather, it’s an organization with one giant team of 29 developers with artificial organizational boundaries
between them. The resulting process loss due to coordination needs is likely to be severe and lead to
inefficient development, quality issues and code that’s hard to evolve.

67

CHAPTER 2. GUIDES

2.3.2 Knowledge Distribution

Let’s face it - software development is a social activity. We work in teams, sometimes distributed, where
we need to communicate and coordinate in order to solve our tasks. Building an organization responsible
for creating and evolving a system is a necessity as soon as your codebase has grown beyond a certain
size. It’s our way to scale and be able to take on larger problems than what we could as individuals.

But moving from individual developers to teams does not come free; No matter how efficient we, as an
organization, are, we’ll always pay a price. The cost of team work is known as process loss. Process
loss is the theory that a team, just like a mechanical machine, cannot operate at 100 percent efficiency.
In the mechanical world we have inefficiencies like friction and heat loss. Our software equivalents are
coordination and communication. The main challenge in most software projects is to minimize the
process loss. Failures to do so often come off as technical issues, when in reality those issues have social
roots.

The software industry has been aware of these issues. But until now, we’ve never had a way to measure
them. This is about to change. In this guide you’ll learn how CodeScene helps you uncover knowledge
distribution and identify team productivity bottlenecks in your system. With the following suite of
analyses you’re now able to make organizational decisions based on data from how you’ve actually
worked so far.

How Do We Measure Knowledge?

The knowledge metrics are based on the amount of code each developer has contributed. CodeScene
looks at the deep history of each file to calculate contributions. This makes sense for two different
reasons:

1. The last snapshot of a source code file wouldn’t be good enough since such shallow ownership is
sensible to superficial changes (e.g. re-formatting issues, automated renaming of variables, etc).

2. Even if one developer completely rewrites a piece of code, its original author will still retain some
knowledge in that area since they’re familiar with the problem domain. The metrics in CodeScene
acknowledge that and will retain some knowledge for the original developer as well.

CodeScene uses the name of each committer to calculate knowledge metrics. So please make sure you
understand the possible biases discussed in the guide Know the possible Biases in the Data (page 77).

Explore the Individual Knowledge Map

The first knowledge analysis measures the knowledge distribution for individual developers in your code-
base.

Each developer is assigned a color in the following visualization. The color of each file represents its
main developer (that is, the developer who has contributed most of the code). You see the resulting
visualization in Fig. 2.73.

All knowledge maps are interactive:

• Click on a package in the visualization to zoom in on the details.

• Click outside the package to zoom out.

• Click on a circle representing a file to get detailed information.

Once you click on a file you get the option to explore who the other authors are, as shown in Fig. 2.74.

CodeScene also supports knowledge maps for pair- and mob programming, where the credits are split
between the contributors in the pair. However, you need to configure your pair programming patterns
in CodeScene to activate this feature. Refer to in Configure Developers and Teams (page 109) for the
configuration options.

68

CHAPTER 2. GUIDES

Fig. 2.73: An example of a knowledge map, click on a circle to get more information.

Fig. 2.74: Inspect the details of each file in the knowledge map.

69

CHAPTER 2. GUIDES

Explore your Team Knowledge Maps

CodeScene also measures knowledge distribution on a team level and this information is usually even
more valuable than the individual metrics.

As soon as you’ve assigned developers to a team, as described in Configure Developers and Teams
(page 109), CodeScene will accumulate their individual knowledge into their teams. The analysis results
are presented using the same principles as for the Individual Knowledge Map. Only now, each color
represents a team as shown in Fig. 2.75.

Fig. 2.75: The distribution of your teams in the codebase.

The Team Knowledge Map lets you reason about both the responsibilities of the different teams. In
general, you want to ensure that your team organization is reflected in the software architecture of your
system. For example, the analysis in Fig. 2.75 has a configuration for three devlopment teams: Net,
Unix, and Unicode. The analysis shows that each time has a clear area of responsibility. However, you
get more details by clicking on the Coordination Needs aspect as shown in Fig. 2.76.

Fig. 2.76: The coordination needs between your development teams.

The coordination analysis shows you the parts of the code where multiple teams have to coordinate
their work. From here you can explore which teams that are involved. The coordination analysis is also
described in more detail in Parallel Development and Code Fragmentation (page 73).

Finally, make sure to read the discussions in the guide Social Networks (page 66) for more information
on the organizational theories and how they correlate to the quality and efficiency of your organization.

70

CHAPTER 2. GUIDES

Measure from the date of the last organizational change

Development organizations aren’t static. People rotate teams, new teams are formed, and old ones
abandoned. Each change introduces a possible bias into the team-level metrics.

The best way to avoid those biases is to select an analysis start date that represents the date of your last
organizational change. For example, let’s say you changed the team structure back in January 2017. In
that case you want to start your team analysis from that date, as illustrated in Fig. 2.77.

Fig. 2.77: The coordination needs between your development teams.

Note that you typically want to use a longer analysis time span for technical analyses. CodeScene
resolves this by letting you configure two separate time spans, as illustrated in Fig. 2.77.

Uncover the Knowledge Loss in your Codebase

Knowledge loss represents code that is written by a developer who is no longer part of your organization
or project. You use this information to reason about the knowledge distribution in your codebase and as
part of your risk management since it is an increased risk to modify code we no longer understand. In
addition, you can also use the analysis pro-actively to simulate the consequences, in terms of knowledge
loss, of planned organizational changes.

The Knowledge Loss analysis will accumulate the contributions of all developers that you have marked
as Ex-Developers in your configuration (see Configure Developers and Teams (page 109)). Those parts of
the codebase that are dominated by Ex-Developers are marked as red in the knowledge loss visualization.
Fig. 2.78 shows an example from an organization where some core developers have left.

To inspect the knowledge loss you just click on a file, as shown in Fig. 2.79.

Note that there’s a special label in the knowledge visualization: Inconclusive. Inconclusive means that
CodeScene cannot determine the original author of a piece of code. This is something that happens if you
run a knowledge analysis on a shorter time span than the total lifetime of a codebase. CodeScene tracks
moved and renamed content, but in doing so it depends on the underlaying object model of Git. So in
the rare cases where copied content doesn’t get detected as such, the code may show up as inconclusive.

71

CHAPTER 2. GUIDES

Fig. 2.78: An example on a knowledge loss analysis.

Fig. 2.79: Inspect the detailed knowledge loss of a file.

72

CHAPTER 2. GUIDES

Use knowledge loss as a simulation

There are several uses for the knowledge loss information. In retrospect, you use it as part of your
planning and risk management since it is an increased risk to modify code we no longer understand.

However, the knowledge loss analysis is much more powerful when used as a simulation. In this case you
use CodeScene to simulate different scenarios and how they would affect your organization. Used this
way, the knowledge loss analysis becomes a pro-active tool that helps you avoid unpleasant surprises in
case a contractor leaves or a developer gets moved to a different project.

Since most analyses only takes a few minutes you’re free to change the setting and run it again until you
know the impact of an organizational change.

2.3.3 Parallel Development and Code Fragmentation

Large scale software development is a social activity. However, the technical nature of our work tends to
obscure that fact and we often mistake organizational issues for technical problems.

One such example is excess parallel development. Excess parallel development is something that happens
when your architecture cannot support the way you’re organized. You may have 20-30 developers that
need to modify the same file, but for different reasons. The symptoms you see are often technical, for
example expensive merges, code that’s hard to understand since it’s changed by different people all the
time, or unexpected feature interactions. CodeScene’s Parallel Development analysis helps you uncover
and prioritize these problems.

Before you read on, please note that CodeScene uses the name of each committer to calculate the
fragmentation metrics. So make sure you understand the possible biases discussed in the guide Know
the possible Biases in the Data (page 77).

The Coordination Needs View Uncovers Excess Parallel Development

Excess parallel development means the modules have a high fragmentation value. A high fragmentation
value means that the development effort is shared between multiple programmers. This is a risk you want
to be aware off - the number of programmers is one of the best predictors of the number of post-release
defects in a module. The more programmers, the more quality issues in that code.

CodeScene runs the fragmentation analyses on both individual authors and teams. You may want to
focus on the team view in case you have cohesive teams with well-defined responsibilities.

If your organization doesn’t have any team structure, start with investigating the fragmentation by
authors as illustrated in Fig. 2.80.

Fig. 2.80: The fragmentation map shows files with excess parallel development.

73

CHAPTER 2. GUIDES

The fragmentation map in Fig. 2.80 shows the fractal value of each file. A fractal value is the degree of
parallel work:

1. Fragmentation 0 (zero): This means that the file has had a single developer working on it.

2. Fragmentation closer to 1.0 (one): The closer to 1.0 the fragmentation gets, the more developers
behind the code and the smaller the contribution of each developer.

Once you’ve found a part of your codebase with excess parallel work you want to get more detailed
information. The Fractal Figures described in the next section gives you all the details you need.

Get more Detailed Information with Fractal Figures

The fragmentation map in Fig. 2.80 is interactive. That means you can click on each file and inspect the
amount of fragmentation as illustrated in Fig. 2.81.

Fig. 2.81: An example of a developer fragmentation. Hovering a colored fragment shows the developer and the
relative contribution.

74

CHAPTER 2. GUIDES

2.3.4 Modus Operandi

Modus Operandi is the method of operation. It’s the signature for how you work with the codebase and
lets you discover trends and risks in the type of coding you do.

What is Modus Operandi?

Forensic psychologists refer to Modus Operandi as the method of operation, a criminal signature. Soft-
ware teams have a modus operandi, too. Our analyses help you uncover it to better understand how the
team works. The information will never be precise, but lets you ask the right questions and guide your
discussions by opening a new perspective on your daily work.

Inspect Trends in Your Commit Messages

CodeScene’s JIRA integration (see Project Management Analyses (page 78)) lets you discover trends
in the type of work you do. However, not all organizations use JIRA. There may also be work-related
information that isn’t available in JIRA.

Thus, CodeScene provides a second data source for work-related trends: your commit messages. Your
commit messages is an interesting data source too, as illustrated in Fig. 2.82

Fig. 2.82: Your commit messages contains work-related information.

By default, CodeScene will identify all commit messages that contain the texts bug, fix, or defect as
illustrated in Fig. 2.83. Please note that the matches are always case insensitive. That is, if you specify
bug, CodeScene will match both bug and Bug.

You can configure CodeScene to match any word or phrase that you want. You just specify a regular
expression in the Modus Operandi section of the project configuration.

2.3.5 Author Statistics

CodeScene provides an aggregated view of all author contributions. This information is intended as
descriptive data that lets you find long-term contributors as shown in Fig. 2.84.

CodeScene also calculates a timeline with a heatmap of the ontributions by each active author, as shown
in Fig. 2.85.

The author heatmap shows the number of recorded commits by each active author. Note that the
contributions are filtered according to your project configuration. That is, author contributions to
blacklisted or excluded content aren’t included in the statistics.

75

CHAPTER 2. GUIDES

Fig. 2.83: Inspect all commits that mention a particular word or phrase.

Fig. 2.84: The detailed author statistics show the aggregated contributions.

76

CHAPTER 2. GUIDES

Fig. 2.85: The timeline shows a heatmap of active author contributions.

2.3.6 Know the possible Biases in the Data

Our social metrics, like all software metrics, are an approximation of the real world. There will always
going to be corner cases and biases in the data. In particular, there are some situations where the metrics
don’t perform as well. So please read the following section in order to minimize the bias in the analysis
results.

Developers with Multiple Aliases

A developer may end up with multiple aliases. Perhaps they’re committing from both a personal- and
a company account. Or they’ve changed their e-mail address. This introduces a bias in the data since
CodeScene uses the name of each developer as their identification.

Fortunately, you can avoid this bias by resolving the author aliases in CodeScene’s configuration UI. As
an alternative to the UI, you may also use a Git feature called .mailmap. A .mailmap is a file that
you include in the root of your Git repository. The file specifies a mapping from multiple names and
addresses to the canonical name and address of each developer with multiple aliases. It’s straightforward
to use a .mailmap, so please check out the git log documentation for the format.

Autosquash Commits

Some teams may use a Git feature called autosquash. This feature is a way of re-writing the development
history. It may be fine if squashing is used for the work of an individual developer. Unfortunately the
feature is sometimes used to combine the work of multiple programmers into a single commit.

The consequence is that the analyses lose important data for temporal coupling and, in particular, the
social metrics become more limited than they’d have to be. For example, it’s not possible to generate
a knowledge map over individual programmers, which means that you miss the opportunity to use the
analysis methods for on- and off-boarding.

It’s highly recommended that you reconsider the autosquash strategy in case you apply it today. In
general, the work of multiple programmers should not be compressed in a single commit.

Pair Programming

The knowledge metrics in CodeScene are based on the author of the code as recorded by Git. This may
obviously be misleading if your organization does pair-programming.

77

https://git-scm.com/docs/git-shortlog

CHAPTER 2. GUIDES

CodeScene does supports knowledge maps for pair and mob programming, where the credits are split
between the contributors in the pair. Refer to in Configure Developers and Teams (page 109) for the
configuration options needed to activate this feature.

2.4 Project Management

2.4.1 Project Management Analyses

CodeScene’s suite of project management metrics let you measure where you spend your costs and inspect
both cost and activity trends. The analysis lets you assess costs on both the architectural level, such as
components and sub-systems, as well as on individual files.

The Need for Project Management Metrics

CodeScene’s project management metrics answer two common questions:

1. How shall we prioritize improvements to our codebase?

2. How can we follow-up on the effects of the improvements we do?

Sure, our Hotspot analysis already addresses these questions and gives us a tool to prioritize. However,
there’s a linguistic chasm between developers and managers here; To a manager, a “commit” doesn’t
carry much meaning. A commit is a technical term that doesn’t translate to anything in the manager’s
world. At the same time, technical debt and low quality code are important subjects to address. So how
can we talk the language of a manager while still tying our data back to something that communicates
with the developers responsible for the code?

CodeScene bridges this chasm by introducing a suite of project management metrics. These metrics
combines our existing version-control measures with data from Jira. This gives you Hotspots measured
by cost rather than the more technical change frequency metric. It also gives you trends in both your
costs and the type of work you do (e.g. features vs maintenance). Let’s see how it is done.

Learn to Interpret the Project Management Metrics

You need to configure CodeScene to access the Jira service. Once that’s done, CodeScene will auto-
matically retrieve the Jira data and run an analysis on it. The results are presented on the Analysis
Dashboard as shown in Fig. 2.86.

Click on the Project Management tile to get to the detailed results. The detailed results presents Hotspots
by cost and let you access the trends. Let’s look at some examples.

The Hotspots by Costs provide an overview of which part of the code that are the most expensive to
maintain. The analysis works just like the normal technical Hotspot analysis. The main difference is that
these Hotspots are ranked by cost rather than the change frequency of the code. You see an example in
Fig. 2.87

As you see in Fig. 2.87, most time is spent in a module named project_feature.clj. That means you want
to prioritize improvements to that code. Before you do that, however, you’d like to look at the cost trend
to see if this is recently accumulated cost or if the Hotspot has been expensive to maintain for a long
time.

You access the cost trends by clicking on a Hotspot and select Trends.

The cost trend is presented in two different graphs:

1. The first graph will show the accumulated cost by month for the selected Hotspot. The costs are
a summary of all Jira issues that have involved work in this specific Hotspot, as illustrated in Fig.
2.88.

2. The second graph shows the cost distributed across the type of work you’ve done.

78

CHAPTER 2. GUIDES

Fig. 2.86: The metrics are accessed from the analysis dashboard.

Fig. 2.87: A Hotspot analysis by cost lets you see where you spend most time.

79

CHAPTER 2. GUIDES

Fig. 2.88: Use the trends in type of work to see where your time is spent.

80

CHAPTER 2. GUIDES

You use this information to ensure that the code evolves in the right direction. For example, you’d like
to see a decrease in the amount of bugfixes and an increase in the amount of feature related issues. You
can also use the cost trends to measure the effect of large-scale improvements as illustrated in Fig. 2.89.

Fig. 2.89: Use the Cost Trends to measure the effect of improvements.

Measure Costs and Activity on Sub-Systems

In many systems the semantically interesting unit isn’t individual files but rather sub-systems and com-
ponents. Thus, CodeScene calculates the same cost metrics on an architectural level too. All you have
to do is to enable your architectural analyses.

Fig. 2.90: Calculate hotspots by costs on architectural level

This kind of information gives you an overview of the costs on the sub-system level, and represents
information that is relevant to non-technical managers too. Thus, use the analysis on this level to bridge
the gap between the technical side of the organization and the business side by letting everyone share a
common picture of how the system evolves.

81

CHAPTER 2. GUIDES

A Note to Developers

You’ll probably notice a high correlation between the project management results and the results from the
technical Hotspot analysis. This is an expected finding. However, the project management metrics have
another usage. Since the project management metrics speak the language of a non-technical managers,
these analyses provide a basis for communication. Use this data to motivate investments in software
quality, like for example to explain the need for a larger refactoring of one ore more top Hotspots.

Pre-Requisites for the Project Management Analyses

This suite of analyses fetches data from a project management tool like Jira. CodeScene provides a Jira
integration as a separate service. However, the Jira data only contains the raw costs (hours, story points,
etc) of a story - there’s no specification of how those costs are shared across the different parts of your
codebase.

CodeScene solves this problem by mapping the Jira data to our wealth of version-control metrics. There
are a number of pre-requisites that are mandatory for this process to work:

• You need to include your Jira Ticket/Issue/Story ID in the commit messages. We use that infor-
mation to unify the data sources.

• You need to have a cost metric in your Jira story. CodeScene supports time-based costs (i.e.
minutes of time to completion) and story points.

Limitations in the Analysis Data

The cost trends and analysis results will never be better than the available raw Jira data. That is, if
your reported costs on a Jira story are too far off, the analysis don’t have any way to adjust it.

In addition, there are a number of limitations that you need to be aware of:

• The total costs for a Jira issue are assigned to the last known month that the issue was worked on.
So if you have long-running issues, you’ll see the costs assigned to a single month even if the issue
took, let’s say, 3 months to implement.

• All files that were worked upon in a Jira issue get assigned the same cost. In reality, some files
typically account for a larger amount of the total costs, but there’s no way for CodeScene to know
that. Instead we treat each file as an equal contributor to the issue. Note that the architectural
level analyses mitigate this issue as they show the aggregated costs.

In general, you’ll find that you get much more out of the analysis results as long as you remember that
the project management metrics are heuristic in their nature rather than precise predictions of the future.

2.4.2 Risk Analysis

CodeScene analyses the risk of each commit. This lets us present both a risk trend and also an early
warning as soon as a high risk commit is detected.

You use this information to react early and focusing code reviews and testing. You also use the overall
risk trend as input and feedback on planned delivery activities.

How Does CodeScene Know That a Commit is High Risk?

CodeScene calculates a unique risk profile for your codebase. The risk profile is based on how the system
has evolved and what a typical change looks like. That is, CodeScene looks more at how a commit looks
than the changed code itself.

CodeScene’s risk profile is a combination of technical and social metrics. The technical metrics relate to
the amount of code that is changed, how many different files that are changed, and the diffusion of the
changes (e.g. how many different sub-systems does the commit touch).

82

CHAPTER 2. GUIDES

The social dimension of the risk profile relates to the experience of the programmer doing the change.
The more experienced the programmer, the lower the risk. This means that two commits with identical
changes may be classified differently depending on the programmer who made the change; Experience
mediates risk. For example, if I make a large sweeping change to the Linux kernel, my change probably
has higher risk than an identical change made by Linus Torvalds. Please note that experience is relative
to your codebase and measured as how much each programmer has contributed to your code historically.

The risk classification that you’ll see in CodeScene always combines these technical and social dimensions.

What’s the Scale of Commit Risks?

CodeScene scores each commit on the range 1 to 10. 1 is a low risk change and 10 is the highest risk.
By default, CodeScene flags all commits with a risk of 7 (or higher) as high risk. You can change this
threshold in the project configuration.

Inspect your Risk Profile

CodeScene delivers an early warning as soon as a high risk commit is detected as illustrated in Fig. 2.91.

Fig. 2.91: An Early Warning for recent high risk commits.

Click on the early warning shown in Fig. 2.91 to view the commit details as illustrated in Fig. 2.92.

Fig. 2.92: Inspect the details of each recent high risk commit.

CodeScene also calculates a rolling average of your risk profile. This analysis lets you reason about risk
trends in your project and relate that trend to both your ongoing work as well as predict delivery risk.

83

CHAPTER 2. GUIDES

Fig. 2.93: The risk trend shows the average risk in the evolution of your codebase.

The example in Fig. 2.93 shows a project where there’s a significant increase in the average risk during
development. When you see a trend like this it’s important to understand why. Perhaps several large
features are being implemented? Or perhaps there’s a change in the ways of working or development
methodology? In any case, it would probably be a mistake to plan a release in July for this particular
project since there has been a lot of recent high risk work that deviates from how the codebase grew
before that date.

Risks Are Relative To The Analysis Period

It’s important to note that your risk profile is always relative to your particular analysis period. That is,
you get a different risk profile if you analyze the complete history of your code versus a short retrospective
analysis. This is by design and most likely to be the information you want.

However, you need to be aware that if you run a Retrospective analysis, you may see more high risk
commits. That just means those commits stand-out compared to the rest of the work you did in that
sprint/iteration; It doesn’t necessarily mean that those commits would be high risk relative to the
complete evolution of your system. To find out, you need to run a full analysis.

2.5 Continuous Integration and Code Review API

2.5.1 Automated Delta Analysis

CodeScene offers the ability to detect potential maintenance problems and early warnings in your code-
base. The earlier you can react to those findings, the better. That’s why CodeScene offers integration
points that let you incorporate the analysis results into your build pipeline.

CodeScene’s Delta Analysis lets you catch potential problems before they are delivered to your main
branch.

84

CHAPTER 2. GUIDES

What are the Pre-Requisites for a Delta Analysis?

A Delta Analysis is always relative to a full analysis. CodeScene will use the latest completed analysis
as a baseline for the Delta Analysis.

This is why we recommend that you configure your analysis to run at least once a day. On projects with
more contributors and high commit frequencies you want to schedule CodeScene to run a full analysis
each hour. We’d say that any project with more than 10 commits per day should run the analysis
frequently.

Integrate CodeScene in your Continuous Integration Pipeline

CodeScene provides a REST API that lets you integrate the analysis results in a continuous integration
pipeline and/or as robot comments in a code review tool like Gerrit.

CodeScene’s REST API provides a special type of analysis called a Delta Analysis. A Delta Analysis is
fast, it usually just takes a few seconds to run, and is used to get early feedback on a pull request or
range of new commits.

Learn what a Delta Analysis Provides

A Delta Analysis is triggered by a pull request, a range of commits or a single commit; You decide through
the API. Each time you trigger a Delta Analysis, CodeScene calculates the following information:

1. Delivery risk of the suggested change set. The risk classification is relative to the risk profile for your
codebase as described in Risk Analysis (page 82). Use this information to prioritize code reviews and to
decide upon delivery risks.

2. Detects modified Hotspots. CodeScene attempts to rise the awareness of your change patterns by noti-
fying your team on each pull request that modifies a top ranked Hotspot. You may use this information
as a driver to refactor those Hotspots into more cohesive units, if appropriate.

3. Early detection of Complexity Trend Warnings. CodeScene already provides an early warning in
case the code complexity starts to rise in a Hotspot. Now the delta analysis can catch such complexity
patterns based on the changes in a pull request. That provides a great opportunity to refactor the code
before delivering it to your main branch.

4. Suggests absent change patterns. This analysis identifies change sets where an expected temporal
coupling is absent. If a cluster of files have changed together for a long time they are intimately related.
This warning fires when such a temporal change pattern is broken. Please note that this may be good -
we’ve refactored something - but it may also be a sign of omission and a potential bug. As a consequence,
this warning is based on a self-correcting algorithm; If you keep ignoring the warning it will go away
automatically as the temporal coupling decreases below the thresholds.

The screenshot in Fig. 2.94 shows an example of a delta analysis result. Please note that this information
is typically consumed and integrated via the REST API for delta analyses that we’ll discuss soon.

Please note that future releases of CodeScene will expand the Delta Analysis capabilities. Our plan is
to provide even more detailed information that helps you get the most out of your time.

Use a Delta Analysis to Save Time in Code Reviews

The main advantage of a delta analysis if that it lets you react to potential problems early. But there’s
a potentially large saving at the other end of the spectrum too; Instead of treating all pull requests as
equals, CodeScene’s risk classification lets you prioritize your code reviews and focus your time where
(and when) it’s likely to be needed the most. Code reviewer fatigue is a real thing, so let’s use our review
efforts wisely.

Code review tools like Gerrit lets you select a label. For example, you specify a label that either allows
or blocks the change. In addition you may select a label as an opinion (+1 and -1 in Gerrit).

85

CHAPTER 2. GUIDES

Fig. 2.94: A Delta Analysis gives you early warnings and detects high risk changes.

When you integrate CodeScene with Gerrit, it’s our recommendation that you map CodeScene’s risk
classification to an automated +1 or -1. For example, all commits below the risk category 3 may be +1,
which indicates to the reviewers how much time they need to spend on this review.

In addition, the delta analyses lets you auto-detect files that seem to degrade in quality through issues
introduced in the current commit or pull request. This is done by calculating code biomarkers (see
Explore your Code’s Biomarkers (page 43)), which are then supervised for their trend as shown in Fig.
2.95.

The REST API for Delta Analyses

CodeScene lets you create a special Bot user role intended to consume the REST API. Login as admin-
istrator and create a Bot user for each of your integration points as illustrated in Fig. 2.96

You trigger a Delta Analysis by POSTing a request to the REST endpoint specified in your analysis
configuration as illustrated in Fig. 2.97.

The payload of the POST request specifies two required fields:

1. commits: This is a JSON array containing one or more commits. CodeScene will run a delta
analysis on all these commits by considering them as a single unit of work.

2. repository: Specifies the Git repository where the commits that you want to analyse are located.
You need to specify the repository name since an analysis project may contain multiple Git repos-
itories.

Other optional parameters:

• coupling_threshold_percent: Specifies minimal temporal coupling for the “Absence of Expected
Change” warning. Default is 80 (%).

• use_biomarkers: Instructs CodeScene to look for degrading biomarkers. Note that this requires
that the biomarkers are enabled for the analysis project.

86

CHAPTER 2. GUIDES

Fig. 2.95: A Delta Analysis detects degrading biomarkers.

Fig. 2.96: Configure a Bot user for each of your integration points.

87

CHAPTER 2. GUIDES

Fig. 2.97: Your analysis configuration specifies the REST endpoint to trigger a delta analysis.

Let’s say that we have created an analysis project by specifying a Git remote:

https://github.com/PHPOffice/PhpSpreadsheet.git

In this case, the repository payload parameter is PhpSpreadsheet (strip the .git exten-
sion). If we want to simulate a delta analysis of the commit designated by the hash
99e5a8e919e1f7b83371a8a586fd6d7875f63583 we issue the following request:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet"}' http://
→˓localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -H "content-type:␣
→˓application/json"

You can also specify a custom temporal coupling threshold:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet", "coupling_threshold_
→˓percent": 50}' http://localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -
→˓H "content-type: application/json"

Finally, you can enable biomarkers to detect potential code quality problems early:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet", "use_biomarkers":␣
→˓true}' http://localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -H
→˓"content-type: application/json"

The example assumes that 1) CodeScene runs on localhost and 2) we have configured a user named
CodeReview.

Notes to Windows Users: The curl syntax above won’t work on Windows unless you escape the payload
properly. We recommend that you use Fiddler instead of curl if you want to test the API on Windows.

Once you’ve issued the POST request above, CodeScene’s Delta Analysis will respond with the following
JSON document:

{"version":"1",
"url":"/projects/64/delta-analysis/75686456d695d60d99a7cd73302f83606c8a8efc",
"view":"/64/delta-analysis/view/75686456d695d60d99a7cd73302f83606c8a8efc",
"result":{"risk":3,

"warnings":[]}}

88

https://github.com/PHPOffice/PhpSpreadsheet.git
http://www.telerik.com/fiddler

CHAPTER 2. GUIDES

The parameters in the response carry the following meaning:

• version: This is the version of the REST API and will change in future versions of CodeScene.

• url: This URL points to the Delta Analysis resource in CodeScene. You can fetch it with an HTTP
GET request at any time and it will return the same result document.

• view: Points to the page in CodeScene that contains the graphical representation of the result as
illustrated in Fig. 2.94.

• result: This JSON object contains two fields. risk is the risk classification of the commit(s), range
1-10. warnings specify any early warnings like Complexity Trend increases. In this case it’s a low
risk commit without any early warning.

Let’s close this guide by looking at a more complex result. In this case a new developer has made a
modification to one of the top Hotspots on a separate branch. The Delta Analysis reports the following
results:

{"version":"1",
"url":"/projects/2/delta-analysis/43cc8a146cc0957f2fcb4b09ae3dee71d5a5cf2e",
"view":"/2/delta-analysis/view/43cc8a146cc0957f2fcb4b09ae3dee71d5a5cf2e",
"result":{"risk":10,

"warnings":[
{"category":"Modifies Hotspot",
"details":["mvc/src/Microsoft.AspNetCore.Mvc.TagHelpers/LinkTagHelper.cs"]},

{"category":"Absence of Expected Change Pattern",
"details":["mvc/src/Microsoft.AspNetCore.Mvc.TagHelpers/ScriptTagHelper.cs"]}]}}

We see that CodeScene reports a high risk of 10. We also note that CodeScene calls our attention to the
modified Hotspot. We use this information to review the change more carefully. Finally we note that
CodeScene detects the absence of an expected change pattern. In this codebase, the LinkTagHelper.cs
is usually changed together with the ScriptTagHelper.cs file. Since that wasn’t the case here, CodeScene
informs us about the omission so that we can investigate it and catch a potential bug early.

Delta Analysis with Gerrit

Gerrit is a code review tool that provides a staging area for code to be reviewed. This staging area is
kept separate from the main, authorative Git repository. As a consequence, the commits for a delta
analysis aren’t available in the main Git repository, but in Gerrit’s mirror of the repository.

CodeScene lets you resolve this by specifying a different origin_url and a specific change_ref to fetch
before the delta analysis is run. Here’s an example:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet", "origin_url":
→˓"gerrit.mycompany.com:39429/dev/wopr", "change_ref": "refs/changes/82/577659/7"}' http://
→˓localhost:3003/projects/64/delta-analysis -u 'CodeReview:MyPassword' -H "content-type:␣
→˓application/json"

That is, CodeScene will fetch a specific change set from Gerrit and then run the delta analysis as indicated
by the other parameters you provide.

Delta Analysis in Offline Mode

Delta analysis is triggered via an API call and thus requires authentication. Since CodeScene checks the
license on a remote license server with every authentication request, the delta analysis API call will fail
if CodeScene can’t reach the license server. If you don’t have an Internet connection or you don’t want
to let CodeScene access the Internet, you need to specify offline-mode parameter:

curl -X POST -d '{"commits": ["149f9e6"], "repository": "PhpSpreadsheet"}' http://
→˓localhost:3003/projects/64/delta-analysis?offline-mode=offline -u 'CodeReview:MyPassword' -H
→˓"content-type: application/json"

89

CHAPTER 2. GUIDES

Please note that there is a new offline-mode=offline parameter in the query string.

If you always run CodeScene in offline mode, you can also turn on Global Offline Mode in the configura-
tion. With global offline mode, you don’t have to append offline-mode=offline parameter to your delta
analysis API URLs.

Read more about the limitations and usage in Offline Mode (page 5) documentation.

Recommendations for Integrating with Gerrit and CI Tools

A Gerrit of CI plugin (e.g. to Jenkins) could chose to present all the information in the Delta Analysis
response. However, our recommendation is to just include a comment that specifies the risk, the number
of warnings and the result view URL. That way, a user can click the URL to get more details while
keeping the integration simple.

2.5.2 Branch Analyses

Many organizations are transitioning to short-lived feature branches and employ practices like continuous
integration/delivery. To work in practice, branches have to be kept short-lived.

CodeScene introduces a new suite of analyses that measure branching activity, different lead times, and
risks. This is information you can use to get insights into your CI/CD process, or to reason about
delivery and development risks.

Note: You need to have at least version 2.15 of Git in order to enable the branch analyses.

Meet the Branch Measures

CodeScene presents a summary of the branch statistics on its dashboard as shown in Fig. 2.98.

Fig. 2.98: An overview of the branch measures.

Branch Duration
The calendar time from the first commit of a branch to the latest commit of the branch. For
example, if the first commit on the feature branch task-52-support-cherenkov-drive-mode is made
at 7am on Dec 1st, and the second commit is done at 10am on the same day, the branch duration
at that point is three hours. High values indicate long-lived branches, which can indicate high risk.

90

CHAPTER 2. GUIDES

Lead Time to Merge
The calendar time between when the last commit of the branch is made, and when the branch is
merged. It can be caused by waiting for code reviews or other tasks required before merging.

Contributing Authors
The number of unique authors that have contributed to a branch. A high number could indicate
a complicated feature, or that it contains many features from different authors.

By default, CodeScene calculates statistics for all branches that have been worked on during the past
two months. Use this high-level overview to ensure you have a short Branch Duration and a short Lead
Time to Merge for each branch. When a branch lives for too long, it puts your delivery at risk of merge
conflicts and unexpected feature interactions.

As you see in the preceding figure, CodeScene also auto-detects early warnings for long lived branches.
Use this information to either:

• Re-plan the scope: Sometimes it’s just too much work in a single feature. Identifying a smaller
feature set that you can deliver faster is one way to shorten the lead times and minimize risk.

• Prioritize verification activities: Use the early warning to focus extra code reviews and tests on the
highlighted branches.

If you click on the branch tile on the dashboard, CodeScene displays a detailed view of each branch as
shown in Fig. 2.99.

Fig. 2.99: A detailed analysis of the work on each branch.

This information lets you identify early signs of trouble, such as long-lived branches, or branches that
become congested by attracting contributions from several different authors.

Note that the thresholds used to trigger the early warnings are automatically deduced from your normal
branching strategy; CodeScene warns when a branch deviates from your normal ways of working. As
such, the warnings are relative to the patterns in your codebase.

You can see another example of such deviations from normal ways of working in Fig. 2.99: One of
the branches has contributions from 5 different developers, which might put you at risk for parallel
development. It’s also a sign that there’s too much development activity on that branch, so you could
use this information to investigate the scope.

Detect Delivery Risks

CodeScene predicts the delivery risk of each active branch (i.e. unmerged work) as shown in Fig. 2.100.

This risk classification predicts the risk for defects, and is given on the scale 1-10 where 10 is the highest
risk.

Use this information to plan preventive measures such as extra code reviews and tests. You can also
setup a separate CodeScene analysis and just focus on the work being done on the branch. In extreme
cases you may chose to postpone the merge of such high-risk branches if you’re close to a critical deadline.

91

CHAPTER 2. GUIDES

Fig. 2.100: Predict the delivery risk of each branch.

Repo-based Projects

Branch Analyses are not currently supported in Repo-based projects. This is because Repo does not
automatically check out a reference branch. For more on using Repo in CodeScene, see Working with
Repo (page 107).

2.6 Miscellaneous

2.6.1 Notifications

CodeScene comes with a flexible notification system which you can use to receive notification messages
when a CodeScene analysis is run.

You can see an example of a Slack notification message in Fig. ??.

Default notifications start with a project name and the analysis results link. Then comes the list of
analysis warnings (if any).

You can customize the content of notification messages in the CodeScene configuration.

Generic Configuration

CodeScene administrators can customize notifications in the global configuration on the Notifications
tab.

Here’s an example:

CodeScene host URL must be configured properly if you want to receive proper links to your analyses’
results. Make sure that the protocol, the host and the port are all correct.

There are two subsections in the Notifications Configuration:

1. Notification Templates - generic notification templates for the actual message that will be sent

2. Slack Notifications - Slack-specific configuration settings

Notification Templates

These are generic notification templates which define the content of notification messages.

92

CHAPTER 2. GUIDES

93

CHAPTER 2. GUIDES

You can see a typical example of a notification template in Fig. ??.

• Analysis result is a special type of notification template which is only used to add the analysis
result link to all other notifications.

• Analysis success is a simple notification that is sent whenever an analysis is run - it’s turned off by
default to avoid noisy notifications.

• Analysis error is only sent when an analysis fails with an unrecoverable error.

• Rising Hotspot warning is an example of a notification which is sent when your analysis finishes
with “Rising Hotspot” warning.

Template Variables

You can use several variables in your notification templates. You use them by wrapping them with
double curly braces, e.g. {{notification/display-name}}.

The following variables are available:

• project-name - the name of the project

• project-url - an absolute URL to the project details; can be useful when the analysis fails

• analysis-result-url - an absolute URL to the project analysis results

• notification/display-name - a display name of the notification, e.g. Rising Hotpost warning; it’s
mostly useful for warnings and corresponds to the labels used for notification templates in config-
uration.

• notification/description - a short description of each notification; again, mostly useful for warnings
and visible under the notification labels in configuration.

Slack Notifications

Slack Notifications configuration are separate from the generic notification settings.

They are hidden by default so you need to enable them first:

Slack Application Setup

Before starting, you need to set up your Slack application. Click the Create a Slack app button and fill
in the details. When the application is created, select OAuth & Permissions in the left panel and pick
the chat:write:bot permission in the Select Permissions Scopes combo box. Save your changes and then
click the Install App to Workspace button at the top of the page:

After the Slack application is installed you should be able to get your access token:

Copy and paste this token into the CodeScene Slack configuration.

94

https://api.slack.com/slack-apps

CHAPTER 2. GUIDES

95

CHAPTER 2. GUIDES

Slack Notifications Config

Slack Notifications configuration comes down to the two important things:

• Notification recipient - the name of the channel (of the user) where the notifications should be sent

• Slack API token - the access token created in the previous step

Note: for Notification recipient, use the name of the Slack channel, as is, e.g. codescene-slack. If you
want to send notifications to the specific user, then prepend @ to the username, .g. @juraj.martinka for
sending notifications to the slack user juraj.martinka.

You can see a sample configuration in Fig. ??.

Once you have everything configured click Save Slack Notifications Settings.

You are ready to run an analysis and recieve your first notification!

96

CHAPTER 2. GUIDES

97

Chapter 3

Configuration

3.1 Project Configuration

3.1.1 Specify the Git Repository to Analyze

Your first step is to tell CodeScene where your code is. There are five different ways of doing that:

1. Specify the paths to your local, physical Git repository, which has to be on the same machine as
CodeScene runs on. The path you specify has to be to the root folder of your repository (i.e. the folder
that contains your .git folder).

2. Let CodeScene scan a folder on your file system for repositories to analyze. You’ll be prompted
with the results and are free to ignore the repositories you want to exclude. This option is useful in a
multi-repository project.

3. Specify the URLs to Git remotes. CodeScene supports the protocols specified by Git clone: ssh,
http, and git. CodeScene will clone the remotes to a local folder that you specify in the configuration as
illustrated in Fig. 3.1. Note that CodeScene will re-use a local Git repository if there’s an existing clone
on the path you specify. Also note that you need to have a an ssh-key that lets the CodeScene (system)
user access your remote repositories.

4. Clone an existing analysis configuration. CodeScene copies all your configuration options – filters,
repository paths, exclusions, teams, ex-developer configuration, etc – to a new project. From here those
two projects (the original and the clone) are completely independent and changes to one of them do not
affect the other.

Finally, note that you cannot mix local repository paths with URLs to remote Git repositories in a single
analysis project.

5. Use Google’s Repo tool. You provide CodeScene with the URL to the repository containing your
project’s manifest file. CodeScene will then initialize a local directory as a Repo project and clone all of
your Git repositories.

With a Repo-based project, you can switch between branches of the manifest to check out different
versions of your project. Branch selection inside the project’s Git repositories can be controlled through
the manifest file.

3.1.2 Analyze Projects organized in Multiple Git Repositories

There’s a recent trend towards organizing the source code of larger systems in multiple Git repositories.
For example, you may have the code for your user interface in one repository, the code for your service
layer in another repository and perhaps even a Git repository dedicated to your back end mechanism.
Another typical example is Microservices where each service is deployed according to its own life cycle.
In that case, organizations often chose to use one Git repository per service.

98

CHAPTER 3. CONFIGURATION

Fig. 3.1: Let CodeScene clone your Git repositories through their URL.

CodeScene supports an analysis of multiple repositories at once. All you have to do is to specify the
paths to them:

Fig. 3.2: Configuration of multiple repositories.

The screenshot above shows three repositories that belong to the same product. During an analysis,
CodeScene will analyze the evolution of the code in all those repositories as though they were in the same
physical Git repository.

You can specify as many repositories as you want and remove one at any time (just erase the text in
that box). However, a word of warning: do NOT attempt to analyze unrelated repositories in the same
configuration. First of all it’s a breach of the license agreement. Worse, you won’t get useful results since
many of the basic metrics, like Hotspots, are relative metrics.

3.1.3 Auto-Import Repository Paths

Specifying one or two repositories by hand is straightforward. However, some systems consists of hundreds
of repositories. In that case you want to use the auto-import feature.

99

CHAPTER 3. CONFIGURATION

The auto-import feature lets you specify a root path to where your repositories are located. Here’s what
it looks like:

Fig. 3.3: Automate the import of multiple repositories.

CodeScene will scan the path you provide to discover any Git repositories. The discovered Git repositories
are presented in a list. Note that you can add additional repositories manually or remove the once you
want to exclude:

Fig. 3.4: The result of auto importing multiple repositories.

From here you just press Continue to proceed with the configuration of your analysis. The rest of the
workflow is identical to the case where you specify repositories manually.

3.1.4 Tune the House-Keeping Options for Analysis Results

CodeScene is designed to run continuously to monitor your system. That also means you will accumulate
lots of historic analysis results that occupy space on your host machine.

100

CHAPTER 3. CONFIGURATION

CodeScene lets you specify a house-keeping strategy that automatically cleans out old historic results,
as illustrated in Fig. 3.5.

Fig. 3.5: Specify how much history you want to keep.

3.1.5 Measure Temporal Coupling across Multiple Repositories

The normal temporal coupling metric considers two files coupled if they tend to change in the same
commits. This won’t work if your codebase is split across multiple repositories. Instead, you want
to aggregate individual commits into logical commits. CodeScene supports two different strategies for
aggregating commits:

By Author and Time
When you specify this option, the tool will consider all commits by the same author on the same
day as a single, logical commit. This option is a heuristic that works well in the absence of a Ticket
ID in your data.

By custom Ticket ID
This option uses an identifier in your commit headers. All commits that refer to the same identifier
will be considered one logical commit.

The second option, By custom Ticket ID, is the preferred method. Fig. 3.6 shows the options in the
repository configuration section Temporal Coupling.

Fig. 3.6: There are two available strategies for aggregating commits.

To aggregate by custom Ticket ID, you need specify a Ticket ID Pattern, in the Ticket ID Mapping
section (see Fig. 3.7). The pattern is used to extract the Ticket ID from the commit message. The
example pattern in Fig. 3.7 will extract all identifiers that start with the text ISSUE- followed by at least
one digit. For example, the commit message ISSUE-42 will result in 42 as the extracted Ticket ID.

101

CHAPTER 3. CONFIGURATION

Fig. 3.7: Configure a pattern to extract a Ticket ID.

Note that CodeScene will still calculate normal temporal coupling on a single commit basis. You want
that in order to spot unexpected dependencies between files in the same repository. The temporal
coupling results for the logical commits discussed above are presented in a separate analysis view.

3.1.6 Temporal Coupling Exclusion Filters

You might have files that you expect to be temporally coupled, for example tests and the corresponding
units under test, or matching .c and .h files. To exclude these coupling from visualization by default, go
to the “Temporal Coupling” section of the project configuration and add “Temporal Coupling Filters”
for the patterns you want to exclude, as shown in Fig. 3.8.

Fig. 3.8: Configure temporal coupling filters for expected file couplings.

Each filter has a name, that can be anything you like, and patterns for coupled file paths. The patterns
are a regular expressions. When a pair of coupled files match the patterns, in either direction, they are
excluded by the filter.

All filters are tried in sequence, and if any filter hits a coupled pair, the pair is excluded. Some useful
examples of patterns are:

Pattern (File 1) Pattern (File 2) Description
.+\.(?
:c|cc|cpp|cxx)

.+\.(?
:h|hh|hxx)

C/C++ includes, e.g. gc.cpp and util.h

.+\/(.+)\.java .+\/(.+)Impl\.
java

Java “Impl” pairs, e.g. Thing.java and ThingImpl.
java

.+\/(.+)\.cs .+\/I(.+)\.cs C# interface pairs, e.g. IComponent.cs and
Component.cs

.*\/(?:(?!test).
)+\.py

.*\/test_.+\.py Python files and tests, e.g. foo/a.py and tests/
test_a.py

If any of the patterns have capturing groups, both matches must generate the same number of captures,
with equal values, to trigger the filter. Note that non-capturing groups and negative look-ahead in regular
expressions can be useful if you want to write advanced filters, and only trigger filters on corresponding
files in corresponding directories.

102

CHAPTER 3. CONFIGURATION

3.1.7 Linking to an External Ticket System

If you have a Ticket ID Pattern configured, and a way to deep-link to tickets by the matched identifiers,
you can configure a Ticket URI Template to enable links in analysis views. That way you will be able to
quickly navigate from Code Churn by Task to the external ticket system, and view more details there.

The Ticket URI Template is based on the URI Template format (RFC 6570), with support for the single
expression {ticket-id}. The matched ticket value, i.e. the captured value of the regular expression
group, is used as {ticket-id} for hyperlinks. For example, if your Ticket ID Pattern is #(\d+), and
your Ticket URI Template is https://example.com/tickets/{ticket-id}, a commit containing the
string #1234 will result in a hyperlink to https://example.com/tickets/1234.

Some useful examples of Ticket ID Patterns and Ticket Template URIs are:

• GitHub: #(\d+) and https://github.com/your-org/your-project/issues/{ticket-id}

• JIRA: (\[A-Z]{2,}-\d+) and https://example.com/jira/browse/{ticket-id}

• Trello (Card Numbers): CARD-(\d+) and https://trello.com/search?q={ticket-id}

• Trello (Card Short IDs): CARD-(.+) and https://trello.com/c/{ticket-id}

3.1.8 Exclude Initial Commits from an Analysis

Some Git repositories start their life as an import of an existing codebase. If the previous history isn’t
migrated together with the code, the author that does the initial commit of the existing codebase gets
all the credit. This leads to a bias in the social analyses.

The solution is to exclude all contributions done as part of the initial commit. You specify those commits
(fetch them from your Git log) in the project configuration as shown in Fig. 3.9.

Fig. 3.9: Exclude specific commits from the analysis.

3.1.9 Exclude Files from an Analysis

An analysis will include all textual content in your repository. That means: you get an analysis of
your build scripts, resource files, configuration files, test data, etc. While it’s a good practice to run
an analysis of all content every now and then, there’s also the risk that you get too much noise in the
analysis results. For example, you typically want to exclude auto generated content.

The Exclude Files option lets you specify a set of file extensions that will be excluded from your analysis:

CodeScene comes with a set of pre-defined exclusion patterns that should match the most common cases.
You’re free to extend this set if you have additional file types that you want to exclude. Just remember
to use a semi-colon (;) to separate each file extension you want to exclude.

103

https://tools.ietf.org/html/rfc6570

CHAPTER 3. CONFIGURATION

Fig. 3.10: Exclude specific types of files.

3.1.10 Exclude Specific Files and Folders from an Analysis

You just learned how you can exclude certain types of files, no matter where they are located in the your
codebase. But sometimes you’d like to exclude a particular file or, more often, a complete folder. For
example, let’s say that you check-in third party code in your repository. You don’t want that code to
obscure potential analysis findings in your own code.

There are two different ways to exclude complete folders and files:

1. White list the content you want to include in the analysis. All other content will automatically be
excluded.

2. Black list the content you want to exclude.

You can specify both white- and black list content. The white listing will be applied first.

You specify a glob pattern to white list the content to include in your analysis as illustrated in Fig. 3.11.

Fig. 3.11: Glob patterns to white list content.

You specify a glob pattern to Exclude Content from the analysis as illustrated in Fig. 3.12.

Fig. 3.12: Glob patterns to exclude content.

The example above will exclude all content under the external folder and the file samples.txt from the
generator folder.

Note: You need to specify your exclusion paths using UNIX style path names. That is, use forward
slashes as separators. Also note that the paths have to start with the name of your repository root.
That is, if your Git repository is located in a folder named backend, as in the example above, you have

104

CHAPTER 3. CONFIGURATION

to prepend that folder name to all your exclusion patterns. The reason for that is due to CodeScene’s
support for multiple repositories where you have to be explicit about what repository you exclude things
from.

There’s one exception to the rule that patterns have to specify the repository root. That’s the case when
you want a pattern to apply across all repositories. For example, let’s say that you want to exclude all
shell scripts in your test folder. In that case you specify a pattern like **/test/*.sh That is, your patterns
are allowed to start with a wildcard too.

3.1.11 A Brief Guide to Glob Patterns

Glob patterns let you specify paths- and file names with different wildcards. CodeScene supports the
following wildcards:

1. * : A single asterisk matches any string of characters. Use it to exclude or while list particular files.
For example *.h will exclude all files with extension h. You can also use the single asterisk to specify
glob patterns that apply to all your repositories in a multi repository analysis project. For example, the
glob pattern */version.txt will match (and possibly exclude) the version.txt files at the top level of each
of your repositories.

2. ** : The double asterisk matches whole paths/directories. You use the double asterisk to exclude
or white list content independent of the content’s location in your codebase. For example, the pattern
myrepository/**/*.h will match all files with extension h in any directory in your repository. You can
also use the double asterisk to match exclude or white list whole folders. Let’s say we want to exclude
all our unit tests from an analysis and that those tests are located in the repository ‘coolstuff’. Here’s a
pattern for that: coolstuff/test/**.

3. ?: The question mark matches a single character.

Please note that all glob patterns are specified using UNIX style path names. That is, if you’re on
Windows you do not use backslash to separate directory names, but rather the UNIX style forward
slash. That is, the directory SomeRepo\Test is excluded by specifying SomeRepo/Test/**.

3.1.12 Specify An Analysis Period

CodeScene lets you specify an analysis period as illustrated in Fig. 3.13. That is, how much of your
repository history do you want to analyze?

Fig. 3.13: Specify how far back in time you want CodeScene to analyse.

105

CHAPTER 3. CONFIGURATION

The actual analysis period you select depends on several factors:

1. The activity in your project: Select a short analysis period, like 6 months, in a codebase with a lot
of development activity.

2. The information you want: If you want an overall view of potential maintenance problems, we
recommend that you use a longer analysis period like a couple of years. If, on the other hand, you
want to identify recent modifications to the codebase, your analysis period could be as short as the
length of your iterations (2-3 weeks).

3. You have recently re-structured the codebase: In this case you want to specify an analysis start date
after the re-structuring. The rationale is that the history is probably not as useful since you now
have a new structure of your system. Use that as the cut-off point.

By default CodeScene uses three different analysis periods depending on the type of information it
analyses:

• Technical information and Team information uses the specified start date.

• Configure the team-level analyses to use the date of the last organizational change.

• Individual knowledge metrics use the full history of your repository.

The rationale is that analyses on the level of individual developers, like knowledge maps and knowledge
loss, need to take the full history of the codebase into account in order to be accurate. You can disable
this behavior and use the specified date for all analyses by unchecking the box “Use the complete Git
history for knowledge metrics” (see Fig. 3.13).

Similar, team-level analyses like coordination needs and Conway’s Law should ignore the historic activity
of previous organizational structures, and you want to measure from the date where the current team
structure got operational.

Finally, please remember that selecting an analysis time span depends on the questions you have. As
such your choice depends on your context and is more of a heuristic than a science. Always start with
an analysis of the full history when in doubt.

3.1.13 Visualization Options

CodeScene is capable of analyzing large codebases consisting of millions lines of code. However, the web
browser you use to view the results isn’t always that performant. In particular, if you have a repository
with several thousands of files, the Hotspot and Knowledge visualizations will become slow and painful
to navigate.

If you experience that problem, consider to increase the thresholds in the Visualization section, shown
in Fig. 3.14.

Fig. 3.14: Exclude small files from a visualization.

The first option simply excludes files smaller than your specified size from the visualizations. The second
option excludes files that haven’t changed more often than the threshold you enter.

The rationale is that in a system of several thousand files, the small ones (1-100 Lines of Code) are
probably not the most interesting ones. Thus, these should be safe to exclude.

Note that the visualization algorithm performs some checks to ensure that a hotspot, no matter how
small, is included anyway so that you don’t miss some important result. Also note that the exclusion
only applies to the visualization - the code is still included in the analysis.

106

CHAPTER 3. CONFIGURATION

3.1.14 Working with Repo

The Repo tool is often used for very large projects containing many separate but related Git repositories.
A central Manifest XML file is then maintained to define the list of included projects.

CodeScene’s Repo integration makes it easier to analyze this kind of large project because you no
longer need to enter each sub-project separately. Just point CodeScene at your manifest repository and
CodeScene will use Repo to download your code. As your project evolves, CodeScene will keep your
analyses in sync, adding and removing Git repositories as necessary.

Using Repo introduces several important differences in how CodeScene works.

Overall approach

When using Repo with CodeScene, your project is controlled through the manifest file. CodeScene
synchronizes your project before every analysis, so any changes to your manifest are automatically and
immediately taken into account.

CodeScene supports branch selection in your manifest repository. You can select different branches to
checkout different versions of your project.

Creating a project with Repo

Repo must be installed on your local machine. If necessary, you can indicate the name of the Repo
executable in the CodeScene configuration.

To create your project, go to the “New Project” page, and choose “Google Repo”. You will be presented
with the following options:

Fig. 3.15: Getting started with Repo

107

https://gerrit.googlesource.com/git-repo/

CHAPTER 3. CONFIGURATION

Local path indicates where the new Repo directory will be installed. If the directory does not exist,
CodeScene will try to create it.

Repo URL is the URL of your repo manifest Git repository. This value will be used in calls to repo
init -u <URL> and should be in the format indicated:

git@github.com/myorg/my-manifests.git

Note that this value cannot be changed later. To change to a new manifest repository, you’ll need to
create a new project.

Manifest filename is the name of the manifest you’ll use. This field is required even if your manifest
is default.xml. Like the Repo URL, this cannot be changed without creating a new project.

Initial branch only needs to be filled out if the manifest file you wish to use is not available in the
master branch of your manifest repository. This allows CodeScene to “see” your manifest in order to
initialize your project.

When you click on “Initialize”, CodeScene will set up the Repo directory and download your manifest
file. The next page allows you to check that the Git repos to be clone are correct, and to switch branches
if necessary.

CodeScene will then clone your repositories. This may take a long time. When this step is complete,
project creation follows the usual path.

Working with Repo-based projects

The primary difference with Repo-based projects is that things like repository selection and branching
within Git repositories are handled through the manifest file, either by modifying it in your manifest
repository or by switching between branches in CodeScene.

To analyze a specific state of your project, you can use either a branch specification in your manifest file

<project name="my-git-project" revision="dev" />

or a specific commit hash

<project name="my-git-project" revision="b507579809e5e5cffee5fd078e2cdae658733538" />

Once a project has been created, you can go to its configuration page to select a new branch of the
manifest repository. When you save your changes, CodeScene will run repo init -b <branch> and
repo sync, which may take some time depending on the size of your project. If you try to switch to a
branch that does not contain a version of your manifest file, CodeScene will issue a warning and return
you to the previous branch.

Please note that when new branches are added to your manifest repository, CodeScene will not detect
them until repo init is run, either before an analysis or when selecting another branch.

Because of how Repo works, Active Branch analysis is not currently available for Repo-based projects.

With Repo, the inclusion of new Git projects does not go through the normal channels. As a result,
CodeScene does not at this time automatically generate an Architectural Component for each Git
repository. For the same reasons, and because by design the list of Git repositories in a project will
evolve over time, CodeScene does not validate Architectural Components against the files present on the
file system.

Duplicate project roots

Projects managed with repo tend to be large, containing many individual repositories, or projects, in
repo’s vocabulary. Projects in repo have distinct filesystem paths (either in the name or the path
attribute), which means that multiple individual projects can have the same name (the last part of the
path), as long as their paths are different:

108

CHAPTER 3. CONFIGURATION

/path/to/a/project
/path/to/another/project
/etc/project

CodeScene uses project names, and not paths, to identify projects. And this means that conflicts are
possible. CodeScene’s repo support is designed so that adding and removing projects from the manifest
file does not require any user intervention. CodeScene just follows along. In some, usually rare, cases,
CodeScene has to rename projects. This can be important when using Architectural Components,
Exclusion Filters or Temporal Coupling Filters that rely on a repository’s project root.

To disambiguate project names in this scenario, CodeScene generates its own project names from the
paths. The paths in the example above would result in the following repositories being used

path-to-a-project
path-to-another-project
etc-project

On project creation, when duplicate project roots are detected, CodeScene allows you to select your own
names if you prefer.

Fig. 3.16: Renaming Repo projects to avoid name conflicts

Whether you choose your own names or use those suggested automatically, these names will be preserved.
In other words, if the above paths are present on project creation, /etc/project will always be mapped
to etc-project, even if it is no longer a duplicate, that is if the other repositories named project are
removed from the manifest file.

This behavior only applies to project creation. Later, the manifest file may evolve and new name conflicts
may appear at any time, each time an analysis is run. In those cases, the automatically generated name
will be used, and their persistence cannot be guaranteed.

For example, if these paths are added to the manifest:

/a/new-project
/another/new-project

they will automatically become a-new-project and another-new-project. If one of them is removed,
the other will revert to its original name, ie. back to new-project.

In some even more rare cases, there can be a conflict between the derived name of a duplicate project,
like a-new-project and an existing, non-duplicated project that just happens to have the same name.
In these cases, a-new-project will be renamed to a-new-project-1 (or a-new-project-2 etc.).

3.2 Configure Developers and Teams

Your knowledge maps are based on colors to give you an accessible high-level overview. The system will
automatically assign a distinct color to each top-contributor in your codebase on the first analysis.

The rest of this guide will walk you through the configuration.

109

CHAPTER 3. CONFIGURATION

Fig. 3.17: Sample on colored knowledge maps.

3.2.1 Important: Run an Initial Analysis Before You Configure Developers

CodeScene mines a list of all contributing developers. Note that this list is mined and updated during
each analysis. That means you need to run one initial analysis before the tool gives you the option to
configure developer properties!

3.2.2 Define Your Development Teams

Click the Teams tab in your project configuration to proceed to the teams configuration, as shown in
Fig. 3.18.

Fig. 3.18: Configure teams for a project in the Teams tab.

The only thing you have to do is to specify the name of each team in your organization. Later, when
you configure developers, you’ll assign them to the team names you chose here (see Fig. ??).

Tip: Some organizations just use one development team. In that case, introduce virtual teams that
depend upon the responsibilities of the different developers. For example, you might want to define a

110

CHAPTER 3. CONFIGURATION

Feature team, a Maintenance team and an Infrastructure team. Using this strategy, you’d be able to
identify code at risk for incompatible parallel changes since different forces lead to the changes.

Even Open-Source Software Has Teams

The team definition is straightforward if you analyze a codebase that’s owned by a traditional organiza-
tion; Just use the information from your organizational chart. However, we find it interesting to apply
teams to open-source codebases as well.

So if you happen to analyze an open-source project, consider introducing the following teams to get
additional social information:

• Define a teams for the organization that owns the code. For example, if you analyze the Clo-
jure codebase, you’d define Cognitect as one team. If you analyze one of Microsoft’s open-source
codebases, you’d use Microsoft as one team.

• Define a team for third party developers that contribute to the codebase

• Consider defining a team of the core maintainers too.

3.2.3 Configure Developer Properties

The developer properties are a bit more tricky than the team configuration, so please let us walk you
through them one by one as illustrated in Fig. 3.19.

CodeScene automatically updates the list of contributing developers; If a new developer starts to con-
tribute code, they’ll be present in the list and the tool lets you configure their properties.

Here are the properties you need to specify:

1. Active/Ex-Developer: By default, all developers are considered active. If some of them leave your
project, mark them as Ex-Developers and CodeScene will include them in the Knowledge Loss
Analysis.

2. Team: The second column lets you assign the developer to a team. This enables CodeScene’s
organizational analyses such as the Team Knowledge Distribution Analysis.

111

CHAPTER 3. CONFIGURATION

Fig. 3.19: Specify organizational information for each developer.

3. Exclude author from analysis: If you check this option, the author will be excluded from all social
analyses (although their contributions will still be included in the technical analyses like Hotspots
and Code Churn). This is an option you use in case you have roles like System Integrators that
only merge code, but never actually make their own contributions.

Once you’ve defined all developer properties you just need to run a new analysis and you’ll get a smor-
gasbord of interesting social analysis results.

3.2.4 Developers and their Aliases: Mapping Version-Control Names to People

Often, over the lifetime of a project, some developers will sign their commits with different names. This
can be a source of inaccuracies for CodeScene’s social analysis tools.

To deal with this, CodeScene provides an interface that allows you to specify the version-control names
that correspond with real people. In CodeScene, when we talk about a Developer, we mean the real
person. Team membership, author exclusion and ex-developer status belong to the developer. Each
developer has at least one Alias, which is how they are identified in version control.

For example, a developer named Jane Doe might have several aliases in version control commits:
Doe, Jane, janedoe, J. Doe, etc. This interface allows theses aliases all to refer to the same person,
which provides more meaningful results in social analyses and unifies the information we have about the
developer in question.

Workflow

To access the interface, click on the Developer identity mapping interface link near the top of the Devel-
opers page.

On the left, the interface displays a list of the current developers.

Choose a developer you want to work on. This is the name that you want to keep.

On the right, a new list will appear. Here you can add (merge) or remove (separate) aliases from the
developer you selected.

In this example, we might want to merge the aliases “Aaron Bedra & Stuart Sierra” and “Aaron Bedra
and Stuart Halloway” with “Aaron Bedra”. After selecting those two aliases, we would click on the
Stage changes button. This updates the list of developers on the left. Now we can either make other
modifications or click on “Submit” at the top of the window to finalize the operation.

112

CHAPTER 3. CONFIGURATION

Fig. 3.20: The Developer panel

Fig. 3.21: When developer is selected, the aliases appear

113

CHAPTER 3. CONFIGURATION

Separating aliases from their developers

If we change our minds, we can later separate these aliases from the developer that we assigned them
to. To do this, we select the corresponding checkbox and click on Stage changes again.

Fig. 3.22: Separating an alias from a developer.

After clicking on Submit, the aliases we chose to separate will become full-fledged developers. Because
these are new identities, group membership, ex-developer status, and exclusion status will be lost. Merg-
ing and unmerging an alias is lossy.

Finding aliases

You can use the “Filter aliases” box to search for matching aliases. Regular expressions are allowed, with
whitespace counting as a logical OR.

Fig. 3.23: Using a regular expression to filter aliases

Renaming developers

Because the Developer is separate from the version control alias, developers can be renamed without
changing how they are detected by CodeScene’s analyses. To change a developer’s name, click on that
developer in the left column. You will notice an “Edit name” link next to their name in the box on the
right.

114

CHAPTER 3. CONFIGURATION

Fig. 3.24: Editing a developer’s name

3.2.5 Configure for Pair Programming

In case your organization uses practices like pair or mob programming you need to tell CodeScene about
it. You do that in the Social part of your project configuration as shown in Fig. 3.25.

Fig. 3.25: Configure patterns to extract author information that reflects pair programming.

The pair and mob programming support requires that you specify the name or aliases of the authors in
your commit messages. CodeScene will then extract those authors as shown in Fig. 3.26.

Using the configured pattern, CodeScene extracts the author information from your commit messages
and adjusts the knowledge maps by splitting the code contributions between the members of each pair.

The configuration is based on a regular expression with the following constraints:

1. It must contain at least one match group.

2. Each match group will map to exactly one author.

Most pair programming patterns contain some kind of delimiter in the commit message. The preceding
examples used square brackets for the pair programming info, [and], and a pipe | to separate the
authors, but CodeScene supports any delimiter like Pair: X,Y or (devs: X/Y).

The most common patterns are:

• Always a pair : Specify a pattern such that you get two match groups. For example, to match the
authors in [Author X|Author Y] you use a pattern like [([ws]+)|([ws]+)].

• Sometimes a pair, sometimes an individual: CodeScene defaults to Git’s Author information field
if it cannot match the configured pattern, so this scenario will work with the previous pattern.

• All author info is in the commit message: In this case you need to make the second match group
optional. For example, to match both the pair [Author X|Author Y] and the single developer
[Author X] you specify [([ws]+)|?([ws]+)?].

115

CHAPTER 3. CONFIGURATION

Fig. 3.26: Pair and mob programming annotations in the commit messages.

• Many authors (a mob): To match more than two authors, we recommend that you introduce even
more optional match groups. For example, to match [Author X|Author Y|Author Z] you specify
[([ws]+)|?([ws]+)?|?([ws]+)?].

Those more elaborate patterns may be a bit tricky, but it’s a one off configuration so once you have it
up and running you won’t see it again.

Finally, note that the preceding examples use aliases for each author instead of their full names. You
can map those aliases to real author names using CodeScene’s UI for developer identity aliases.

3.2.6 Import a Definition of Development Teams

It may well be impractical to configure each team and developer via the UI, particular for large organi-
zations. That’s why CodeScene supports importing an organizational chart.

You will find the import functionality in the Team configuration:

Fig. 3.27: Importing developer information by uploading a CSV file.

The input file specifies your organization. The file format has to be a CSV with two columns: author
and team.

3.3 Users and Roles

CodeScene lets you create users and grant them various levels of access depending on their roles.

116

CHAPTER 3. CONFIGURATION

3.3.1 Adding Users

When logging in with your CodeScene Username and License Key you receive full administrative priv-
ileges. Some tasks require these special privileges, such as deleting projects and managing the global
configuration. We recommend using the administrator login only for such tasks, and creating user ac-
counts with restricted access for regular work.

By clicking the “Configuration” tab in the top navigation bar, you can access the global configuration
page. If you are logged in as the administrator, you should see the Users configuration, as in Fig. 3.28.

Fig. 3.28: In the global configuration you can add new users to the system.

Enter the user name and password, and click “Add User” to finish. The password can be changed later
if needed, either by the administrator or by the users themselves.

3.3.2 Assigning Roles

The system comes preconfigured with a number of roles. You can assign roles to the users in your system
to grant them specific access.

Technical
Technical analyses only.

Developer
Technical, architectural and social analyses.

Architect
Technical, architectural and social analyses.

Test Leader
Hotspot and knowledge map analyses.

Manager
Technical quality guide and social analyses.

Full Read-only Access
All analysis results, but cannot perform any actions. Typically used to display a monitor dashboard.

Bot This role is intended for third-party integrations like code review or continuous integration bots.
This role is allowed to trigger an analysis and access the overview of the result.

In the table of existing users you can see the currently assigned roles. Click on the Role select box, as
shown in Fig. 3.29, to change the assigned role of a user.

3.3.3 Permissions by Role

This is a more detailed description of various permissions associated with the CodeScene roles.

117

CHAPTER 3. CONFIGURATION

Fig. 3.29: By clicking the Role select box you can change the assigned role of a user.

Role Permissions
Technical • Change own password

• Technical analyses - warnings, hotspots,
temporal coupling, code churn trends

Developer Same as Technical plus:
• Analysis process branches (branch statistics

in Project Management -> Console)
• Social analyses - networks, knowledge map,

parallel development, code churn by author,
warnings, modus operandi

• Architectural analyses - hotspots, temporal
coupling

Architect Same as Developer plus:
• Project configuration
• Run a project analysis
• Project management - Costs and Risks in

Project Management
• Analysis monitor (Project config -> History

-> Monitor)

Test Leader • Change own password
• Analysis overview
• Technical analyses - hotspots
• Social analyses - knowledge map

Manager • Change own password
• Analysis overview
• Analysis process branches
• Technical analyses - hotspots
• Social analyses - networks, knowledge map,

parallel development, code churn by author,
warnings, modus operandi

• Project management - Costs and Risks
• Analysis monitor

Full Read-only Access • Analysis overview
• Analysis process branches
• Technical analyses (same as Technical)
• Social analyses (same as Developer)
• Architectural analyses (same as Developer)
• Project management (same as Architect)
• Analysis monitor

Bot • Analysis overview
• Run a project analysis (used for delta anal-

ysis)

118

CHAPTER 3. CONFIGURATION

3.3.4 Project Access Management

Global Configuration

By default, all projects are visible to all CodeScene users. You can change this setting by selecting
“Restrict access to all projects . . . ” in the global configuration as shown in Fig. ??.

When access is restricted, only ‘project collaborators’ are allowed to access a project. Read more about
project collaborators in the next section.

Project-specific Configuration

An administrator can configure project access management settings on a per-project basis in the project
configuration tab Access Management:

Project Access Mode

There are three choices for Project Access Mode:

119

CHAPTER 3. CONFIGURATION

1. Allow Everyone - everyone is allowed to access the project regardless of the Default Project
Access setting in the global configuration

2. Restrict Access - only project collaborators are allowed to access the project

3. Inherit Default Setting - use whatever project access mode is set in the global configuration.

Note: The administrator can always access all projects.

Project Collaborators

To add a normal CodeScene user as a collaborator just enter their username and click the Add
Collaborator button. For an LDAP user, use the distinguished name of the LDAP user or some
of their LDAP groups.

When a collaborator logs in, they will only be able to see projects accessible to them.

If you use the delta analysis API you need to add your Bot user to project collaborators too.

3.3.5 Single Sign-On

By default, CodeScene operates with an internal user database. Alternatively, you can configure another
authentication provider, such as LDAP/Active Directory, to perform identity verification for your users,
thus avoiding the duplication of your users’ accounts in CodeScene. Users can then log in using the same
credentials that they use for other services within your system. Currently, only an LDAP authentication
provider is supported.

Note: The users still need to perform the CodeScene login operation. We do not support full SSO
integration which would mean that the CodeScene login process could be skipped entirely for authorized
users.

LDAP Authentication Provider

A generic LDAP server or Active Directory can be used for user authentication.

LDAP authentication is turned off by default and the configuration fields are hidden as shown in Fig.
??.

Activate LDAP Authentication by clicking on the “Use LDAP Authentication” checkbox and fill in the
details as shown in Fig. ??.

You will need to configure the “LDAP host” address and the “LDAP search base” settings. CodeScene
provides default values for the remaining settings, e.g. port and connection timeouts.

The “LDAP search base” is used as a root for LDAP queries searching for data about users and their
groups. Make sure to specify a proper base for the search to not miss any relevant user data. See
Components of an LDAP Search: for more details.

The “LDAP Bind DN format” is used to create a proper full login name accepted by your LDAP server.
It’s usually a full “Distinguished Name”, although Active Directory supports various formats like the
“User Principal Name” (e.g. username@mycompany.com). You will use {username} placeholder to

120

https://technet.microsoft.com/en-us/library/cc978021.aspx?f=255&MSPPError=-2147217396
mailto:username@mycompany.com

CHAPTER 3. CONFIGURATION

121

CHAPTER 3. CONFIGURATION

configure the username expansion - see the examples on the Configuration page. You can leave this field
empty if your users always enter the full login name manually.

We also encourage you to use the “Secure LDAP” connection by checking the “Use Secure LDAP con-
nection” checkbox. In this case, you will need to change the LDAP port too; secure LDAP connections
often use port 636.

LDAP Groups Settings

Like normal CodeScene users, users authenticated with the LDAP authentication provider also need to
have a “role” assigned to them. This is done with the “LDAP Groups Settings” as shown in Fig. ??.

When user data is fetched from an LDAP server, the user’s LDAP groups are matched to the CodeScene’s
roles based on the “LDAP Groups Settings” configuration. E.g. if the user is a member of the “CodeScene
Managers” LDAP group, then he will have CodeScene’s “Manager” role.

Multiple groups can be assigned to the single LDAP user (unlike the normal CodeScene users).

Moreover, nested groups are supported; that is if an LDAP user is a member of the group “Managers”
which is a member of the group “CodeScene Managers” then that LDAP user will have the CodeScene’s
“Manager” role too.

Finally, if no matching CodeScene role is found for an LDAP user, the value of “Default CodeScene role”
is used. By default, this is set to “Full Read-Only Access”, but it can be changed to a more restrictive
role or even a special “No Access” role which will deny access to all LDAP users who aren’t members of
a proper CodeScene LDAP group. You can see this in Fig. ??.

3.4 Project Management Integration

CodeScene supports integration with project management (PM) systems, like JIRA. Issues in the PM
system are mapped to the corresponding commits in the version control system.

122

https://www.atlassian.com/software/jira

CHAPTER 3. CONFIGURATION

3.4.1 Repository Configuration

By default, PM integration is disabled (see Fig. 3.30). Enable by checking the ‘Enabled’ checkbox.

Fig. 3.30: Check ‘Enabled’ to enable the project management integration.

Enabling the integration lets you edit the remaining fields (see Fig. 3.31):

API URL
The base URL of the PM integration service. If you have deployed the JIRA integration in Tomcat,
the URL will likely be http://localhost:8080/codescene-enterprise-pm-jira.

API Credentials
The credentials needed to access the PM integration service. Note that these are the credentials
that are configured in the PM integration service.

Test Connection
Try connecting using the specified API URL and credentials, and check the status of the PM API,
before saving the configuration. Use this option to verify the connection before running an analysis.

External Project ID
The project identifier in the external system. If the external system is JIRA, this field should
contain the JIRA project key. For example, if issues are named MYPROJ-123, the project key
(and thus the external project ID) is MYPROJ.

You can add multiple JIRA projects here by separating them with a semicolon, ; as shown in Fig. 3.32

3.4.2 Ticket ID Configuration

Each item from the PM integration has an ID that needs to match the Ticket IDs in CodeScene. For
example, when integrating with JIRA, the mapping needs to extract the ID part from the JIRA issue
key. In addition to mapping item IDs from the PM system, the ticket IDs need to be extracted from
the VCS logs, which is called Ticket ID Mapping. Tune the House-Keeping Options for Analysis Results
(page 100) explains Ticket ID Mapping in greater detail. Fig. 3.33 illustrates how both mappings extracts
IDs with the same format.

Ticket ID Configuration for Multiple JIRA Projects

Please note that in case you integrate with multiple JIRA projects, you may have to use a different
Ticket ID configuration in case the ID’s may overlap.

For example, let’s say you integrate with three projects. Each project will have a JIRA ID like
FRONTEND-123, BACKEND-765 and so on. In this case you want to use the whole JIRA ID as a

123

CHAPTER 3. CONFIGURATION

Fig. 3.31: A configuration sample for project management integration.

Fig. 3.32: A configuration sample for integration with multiple projects.

124

CHAPTER 3. CONFIGURATION

Fig. 3.33: Ticket IDs are extracted from the VCS logs using Ticket ID Mapping, and Project Management Item
IDs are mapped from JIRA issue keys using a configured pattern in the JIRA integration service.

Ticket ID to ensure that they are unique. In addition, you need to specify a regular expression that will
match all your possible JIRA ID ranges

Fig. 3.34 shows an example on such a configuration.

Fig. 3.34: Ticket ID specification that matches items from multiple JIRA projects.

3.5 Legal Restrictions

Some analysis information from CodeScene may be considered sensitive from a legal perspective. This is
a topic that varies between different jurisdictions and/or company policies. Thus, CodeScene provides
configuration options that let you disable such information.

3.5.1 Disable the Author Statistics

CodeScene provides an aggregated view of all author contributions. This information is intended as
descriptive data that lets you find long-term contributors as shown in Fig. 2.84.

You disable this analysis by logging in as an administrator, click the Configuration tab in the top bar,
and check the box as shown in Fig. 3.36.

125

CHAPTER 3. CONFIGURATION

Fig. 3.35: The detailed author statistics show the aggregated contributions.

Fig. 3.36: The configuration lets a CodeScene administrator disable sensitive information.

126

CHAPTER 3. CONFIGURATION

3.5.2 A Warning on Performance Evaluations

The detailed author statistics are useful in order to find the people that carry the history of your codebase
and product in their head. Their stories often complement the analysis results and help you put your
findings into context.

We strongly recommend against using this data for performance evaluations. That isn’t the purpose
of these analyses. The reason we advice against this is part ethical and part practical. In particular,
once someone starts to evaluate contributors people will adapt by optimizing for what’s being measured.
For example, if I’m evaluated by how many commits I do I’ll increase the number of commits. My
commits will no longer carry any meaning, but my statistics “improve”. In addition, using this data for
performance evaluation is likely to destroy the team dynamics. Again, if I’m measured by how many
commits or lines of code I produce I’m less likely to invest time in supporting my peers and we end up
with local optimizations that hurt the overall productivity.

127

	Getting Started
	Configure Your Environment
	Install the Supporting Tools
	Setup an SSH Key for Git
	Setup Proxy Server

	Installation
	Run CodeScene from the Command Line
	Configure the available Memory
	Install CodeScene on a Server
	Configure additional users

	Run an Analysis
	Creating a New Project
	Force an Analysis
	Run a Retrospective
	Find your Way Around

	Resolve Developer Aliases
	Use a Reverse Proxy for HTTPS Support
	Display A Monitor Dashboard
	View the Monitor Dashboard
	Supervise your Feature Branches

	Upgrade Your License
	Upgrade from an Expired License
	Upgrade from a Previous License

	Guides
	Technical
	Hotspots
	Temporal Coupling
	Complexity Trends
	X-Ray
	Code Biomarkers–A Virtual Code Reviewer
	Code Churn
	Code Age

	Architectural
	Architectural Analyses

	Social
	Social Networks
	Knowledge Distribution
	Parallel Development and Code Fragmentation
	Modus Operandi
	Author Statistics
	Know the possible Biases in the Data

	Project Management
	Project Management Analyses
	Risk Analysis

	Continuous Integration and Code Review API
	Automated Delta Analysis
	Branch Analyses

	Miscellaneous
	Notifications

	Configuration
	Project Configuration
	Specify the Git Repository to Analyze
	Analyze Projects organized in Multiple Git Repositories
	Auto-Import Repository Paths
	Tune the House-Keeping Options for Analysis Results
	Measure Temporal Coupling across Multiple Repositories
	Temporal Coupling Exclusion Filters
	Linking to an External Ticket System
	Exclude Initial Commits from an Analysis
	Exclude Files from an Analysis
	Exclude Specific Files and Folders from an Analysis
	A Brief Guide to Glob Patterns
	Specify An Analysis Period
	Visualization Options
	Working with Repo

	Configure Developers and Teams
	Important: Run an Initial Analysis Before You Configure Developers
	Define Your Development Teams
	Configure Developer Properties
	Developers and their Aliases: Mapping Version-Control Names to People
	Configure for Pair Programming
	Import a Definition of Development Teams

	Users and Roles
	Adding Users
	Assigning Roles
	Permissions by Role
	Project Access Management
	Single Sign-On

	Project Management Integration
	Repository Configuration
	Ticket ID Configuration

	Legal Restrictions
	Disable the Author Statistics
	A Warning on Performance Evaluations

