
Enterprise Edition

1.5.2

December 20, 2016

Contents

1 Getting Started 3
1.1 Configure Your Environment . 3

1.1.1 Install the Supporting Tools . 3
1.1.2 Setup an SSH Key for Git . 3

1.2 Installation . 3
1.2.1 Run CodeScene from the Command Line . 4
1.2.2 Install CodeScene on a Server . 4
1.2.3 Configure additional users . 5

1.3 Run an Analysis . 5
1.3.1 Creating a New Project . 5
1.3.2 Force an Analysis . 8
1.3.3 Run a Retrospective . 8
1.3.4 Find your Way Around . 8

1.4 Ensure you use a Mailmap . 10
1.5 Use a Reverse Proxy for HTTPS Support . 10
1.6 Display A Monitor Dashboard . 10

1.6.1 View the Monitor Dashboard . 10

2 Guides 12
2.1 Technical . 12

2.1.1 Hotspots . 12
2.1.2 Temporal Coupling . 16
2.1.3 Complexity Trends . 21
2.1.4 X-Ray . 26
2.1.5 Code Churn . 34
2.1.6 Code Age . 35

2.2 Architectural . 40
2.2.1 Architectural Analyses . 40

2.3 Social . 41
2.3.1 Social Networks . 41
2.3.2 Knowledge Distribution . 44
2.3.3 Parallel Development and Code Fragmentation . 46
2.3.4 Modus Operandi . 48
2.3.5 Know the possible Biases in the Data . 51

2.4 Project Management . 51
2.4.1 Project Management Analyses . 51
2.4.2 Risk Analysis . 55

3 Configuration 58
3.1 Project Configuration . 58

3.1.1 Specify the Git Repository to Analyze . 58
3.1.2 Analyze Projects organized in Multiple Git Repositories 58
3.1.3 Auto-Import Repository Paths . 60
3.1.4 Measure Temporal Coupling across Multiple Repositories 61
3.1.5 Exclude Files from an Analysis . 61
3.1.6 Exclude Specific Files and Folders from an Analysis 62

1

CONTENTS

3.1.7 A Brief Guide to Glob Patterns . 63
3.1.8 Specify An Analysis Period . 63
3.1.9 Visualization Options . 64

3.2 Configure Developers and Teams . 65
3.2.1 Important: Run an Initial Analysis Before You Configure Developers 65
3.2.2 Define Your Development Teams . 65
3.2.3 Configure Developer Properties . 67
3.2.4 Import a Definition of Development Teams . 67

3.3 Hotspot Metrics . 68
3.3.1 Understand the possible Bias in Commit Styles . 68
3.3.2 Enable Relative Code Churn . 68
3.3.3 The Pros and Cons of Relative Code Churn . 68

3.4 Users and Roles . 69
3.4.1 Adding Users . 69
3.4.2 Assigning Roles . 69

3.5 Project Management Integration . 70
3.5.1 Repository Configuration . 70
3.5.2 Ticket ID Configuration . 72

Welcome to the CodeScene documentation!

This documentation is divided into sections, each being suited for different types of information you
might be looking for.

• Getting Started (page 3) helps you take the first steps after you purchase of CodeScene. You will
learn how to install and setup the tool, as well as running your first analysis.

• Guides (page 12) walk you through specific features and aspects of the tool, focusing on how you
can use them to achieve certain goals.

• Configuration (page 58) explains how you configure projects to get the best possible analysis results.

2

Chapter 1

Getting Started

CodeScene is a web-based application that you install on a server and access via your web browser. Once
you’ve installed the tool, you will be up and running with your first analysis results in just a few minutes.

1.1 Configure Your Environment

CodeScene runs anywhere a modern Java Virtual Machine (JVM) runs. We test the tool on Mac OS,
Windows, and different Linux distributions.

The system requirements depend upon the size and history of the codebase you want to analyze. In
general, RAM memory is the most critical resource on the server. That means you want to ensure that
there’s at least 4 Gb of RAM available for the CodeScene application.

1.1.1 Install the Supporting Tools

You need to install the following to run CodeScene:

• A Java run-time (or JDK if you run from the command prompt), 64-bit version, at least Java 1.8.
You ensure you have the right Java version by typing java -version in a command prompt.

• Have a Git client on your path since the tool will assume there’s an executable named “git”
somewhere. Your Git client has to be at least version 2.6. You ensure you have the right Git client
version by typing git –version in a command prompt.

Please note that you can specify a custom Git client in the Configuration section once you login to
CodeScene.

1.1.2 Setup an SSH Key for Git

CodeScene operates on local clones of your Git repositories. CodeScene does an automated git pull before
an analyses, which lets you see the latest changes reflected in your analysis results. This means you need
to grant CodeScene access to your repository origins. You do that by providing an SSH key (see for
example https://git-scm.com/book/be/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key).

NOTE: If you chose to run CodeScene in Tomcat, the SSH key has to be associated with the Tomcat
user since that’s the user who will access the Git repositories.

1.2 Installation

3

https://git-scm.com/book/be/v2/Git-on-the-Server-Generating-Your-SSH-Public-Key

CHAPTER 1. GETTING STARTED

1.2.1 Run CodeScene from the Command Line

We typically deploy CodeScene as a service in an application container (e.g. Tomcat) as described in
the next session. However, the simplest way to get the application up and running is by launching the
standalone JAR:

java -jar codescene.standalone.jar

This will launch a web application that listens on port 3003 (you can override that by setting a different
port through the environment variable CACS_RING_PORT.

Now, please point your web browser to localhost:3003.

1.2.2 Install CodeScene on a Server

A server installation is the recommended way of running CodeScene. This section described how you do
that using Tomcat.

Run CodeScene in Tomcat

CodeScene is delivered as a WAR file (Web application ARchive). We recommend that you deploy it
using Tomcat (https://tomcat.apache.org/index.html).

Specify a file folder for the database

CodeScene uses an embedded database. That means, you don’t have to install any database or drivers
yourself. However, you need to specify a path to a file folder where CodeScene is allowed to store its
database. Here’s how you configure Tomcat to do that:

1. Open the file context.xml located under the conf directory in your Tomcat installation.

2. Add an <Environment> tag to context.xml that specifies the path to a folder you want to use for
the database (see the example below).

3. Save context.xml.

Here’s an example on how context.xml may look on a Windows installation (note that you need to modify
the path to fit your environment):

<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
<Environment name="empear.dbpath"

value="C:\\some\\path\\to\\the\\database\\empear.codescene"
type="java.lang.String"/>

</Context>

In case you run on a Linux-based system, you just specify a different path format. For example:

<Context>
<WatchedResource>WEB-INF/web.xml</WatchedResource>
<WatchedResource>${catalina.base}/conf/web.xml</WatchedResource>
<Environment name="empear.dbpath"

value="/Users/adam/Documents/Empear/deployment/empear.codescene"
type="java.lang.String"/>

</Context>

NOTE: Please ensure that Tomcat has write access to the folder you specify.

4

https://tomcat.apache.org/index.html

CHAPTER 1. GETTING STARTED

Deploy the codescene.war

Once Tomcat is up and running, with your modified context.xml, you just copy the codescene.war to
the webapps folder in your Tomcat installation.

Access CodeScene

By default, Tomcat will launch CodeScene on port 8080 and at the path /codescene/. If you’re logged in
on the server, you access the application on http://localhost:8080/codescene/login. You should see the
activation screen in your web browser (see Fig. 1.1).

Fig. 1.1: The first time your login you are prompted to activate the application.

Enter the credentials you received in your license file. You’re now ready to login (see Fig. 1.2).

The first time you login, you use the same credentials to login as you used to activate the application.
That is, give your Licensee Name as User Name and your Product Key as Password.

You’re now up and running with CodeScene!

1.2.3 Configure additional users

You are granted administration privileges each time you login with your license credentials (note that
you can do that at any time, for example to administrate users).

You can add new users and assign them roles in the global configuration. Users and Roles (page 69)
describes this in greater detail.

1.3 Run an Analysis

1.3.1 Creating a New Project

Your first step is to create and configure a project. You do that by clicking on the “Create New Project”
button (see Fig. 1.3).

Once you click the “Create New Project” button you are prompted with a choice (see Fig. 1.4). Select
Specify Paths if you plan to analyze just one or two repositories and enter the paths manually. Select
Scan Directory to auto-import multiple repositories into your analysis project.

5

http://localhost:8080/codescene/login

CHAPTER 1. GETTING STARTED

Fig. 1.2: Once you’ve activated the tool you’re ready to login.

Fig. 1.3: Click on the “Create New Project” button to create a project and configure it for analysis.

Fig. 1.4: Specify the local Git repository paths.

6

CHAPTER 1. GETTING STARTED

If you chose to Specify Paths, just type (or copy-paste) the path to your local Git repository clones. You
can add as many repositories as you need.

Once you click “Continue”, you arrive at the “Project Details” page (see Fig. 1.5). There are a number
of important configuration options in this step. The Configuration (page 58) include advice on how you
select an analysis period. When in doubt, specify the earliest possible starting date as indicated in the
help text.

NOTE: It’s important that the Analysis Results file folder that you specify is writable for the Tomcat
user; all analysis result content will be stored there.

Fig. 1.5: The detailed configuration lets you specify analysis period and a result path.

Once you’ve created the project you’ll arrive at its configuration details. And yes, there’s a lot, really
a lot, of configuration parameters. The good news are that you normally don’t have to change any of
these parameters since they all have sensible defaults. However, you want to look at your Analysis Plan.
Go to the “Analysis Plan” configuration as shown in Fig. 1.6 and specify a suitable interval, for example
once every night.

From now on, CodeScene will run all analyses automatically according to your plan. However, you
probably don’t want to wait for the next scheduled run to get results on your codebase. That’s why
CodeScene supports a forced analysis as described in the next section.

7

CHAPTER 1. GETTING STARTED

Fig. 1.6: Your analysis plan specifies how often an analysis is run.

1.3.2 Force an Analysis

CodeScene lets you run an analysis on demand. Just go to the dashboard and press the Run button as
illustrated in Fig. 1.7.

Fig. 1.7: Press the Run button to force an analysis.

1.3.3 Run a Retrospective

CodeScene also includes the option to run an analysis tailored to a Retrospective. This feature is located
on the “History” tab of your analysis project as illustrated in Fig. 1.8.

For a detailed description of the use cases for Retrospectives, read the article The Happy Marriage of
Retrospectives and Software Evolution.

1.3.4 Find your Way Around

We’ve worked to make CodeScene as easy as possible for you to use. Basically, you just need to remember
three things:

1. Click the cogs button of your project (see Fig. 1.9) to access details, configuration, and to force
analyses.

2. Click on the Latest Analysis link to inspect your analysis results (see Fig. ??).

3. Click on the “CODESCENE” text to return to the main screen, should you ever get lost.

8

http://empear.com/blog/happy-marriage-of-retrospective-and-software-evolution/
http://empear.com/blog/happy-marriage-of-retrospective-and-software-evolution/

CHAPTER 1. GETTING STARTED

Fig. 1.8: A retrospective lets you analyze the development activity in the past sprint/iteration.

Fig. 1.9: The cogs button in the project tile takes you to the project details and configuration.

9

CHAPTER 1. GETTING STARTED

1.4 Ensure you use a Mailmap

The social metrics need to identify each developer that contributes code. Unfortunately, it’s common
that developers have multiple Git aliases, which will bias the social metrics.

You avoid that bias by providing a .mailmap. A .mailmap is a Git feature. It’s a file that specifies a
mapping from multiple aliases to one for each developer. CodeScene automatically uses the .mailmap
when it’s present.

Read the Git Documentation on mapping authors for a description on how to configure the .mailmap.

1.5 Use a Reverse Proxy for HTTPS Support

CodeScene doesn’t implement HTTPS support itself. Instead we recommend that you put a reverse
proxy in front of the application if you need SSH. We recommend Nginx as reverse proxy.

1.6 Display A Monitor Dashboard

Use CodeScene’s monitor view to display an auto-updated dashboard with the status of your codebase.

1.6.1 View the Monitor Dashboard

CodeScene presents a high-level monitor view that displays the key metrics in your codebase (see Fig.
1.10). Present it on a TV or a big screen in the office and share the automatic updates with your team.

Fig. 1.10: The monitor dashboard gives you a high-level overview of your codebase.

The monitor dashboard is automatically updated with the latest analysis results.

You access the monitor dashboard from the “History” view of your project configuration (see Fig. 1.11).
Please note that you need to have the role “Full Read-only Access” to view the dashboard, so please
create a dedicated user for the monitoring as described in Users and Roles (page 69).

10

https://git-scm.com/docs/git-shortlog#_mapping_authors
https://nginx.org/en/download.html

CHAPTER 1. GETTING STARTED

Fig. 1.11: Access the monitor dashboard from the History view in the project configuration.

11

Chapter 2

Guides

These guides walk you through specific features and aspects of CodeScene Enterprise Edition. They are
divided into Technical, Architectural, and Social guides.

2.1 Technical

2.1.1 Hotspots

Hotspots are the workhorse of software analyses and our recommended starting point as you explore
your codebase.

What is a Hotspot?

Your development activity tends to be located to relatively few modules as illustrated in Fig. 2.1. A
Hotspot analysis helps you identify those modules where you spend most of your time. This is information
you use to improve the parts that really matter. The parts where you’re likely to get a return on your
investment.

Fig. 2.1: The dashboard gives you a high-level overview of the Hotspot activity in your code.

A hotspots is complicated code that you have to work with often.

12

CHAPTER 2. GUIDES

Focus on your Main Suspects

To prioritize your hotspots, CodeScene employs algorithms that look at deeper change patterns in the
analysis data. The rationale is that complicated code that changes often is more of a problem if:

1. The hotspot has to be changed together with several other modules.

2. The hotspot affects many different developers on different teams.

3. The hotspot is likely to be a coordination bottleneck for multiple developers.

This algorithm allows CodeScene to rank and prioritize the hotspots in your codebase as illustrated in
Fig. 2.2.

Fig. 2.2: CodeScene prioritizes the Hotspots in your code.

The red category 1 hotspots are the ones you want to focus on improving first. Improvements to those
parts are likely to give you a large return on your investment.

Once you’ve addressed those hotspots, the yellow category 2 hotspots become interesting as well. A
category 2 hotspot is likely to be a real problem as well, albeit not as severe as category 1.

Shrink the Problem Space with Main Suspects

The ranked list presented as the Main Suspects is based on probabilities; We cannot guarantee that the
code represents a true problem. But it’s likely to be one. And, best of all, that data is based on how
your developers have worked with the system so far.

The main advantage of using the Main Suspects as a guide to improvements is that you’re able to narrow
down refactorings to a small part of the system. That in turn will give you more time to tackle larger
issues once you’ve made these initial improvements.

Explore the Hotspot Activity

CodeScene also lets you explore the overall Hotspot activity in your code. These Hotspots are calculated
from two different data sources:

1. We use the lines of code in each file as a proxy for complexity.

2. We use the change frequency of each file as a proxy for the effort you’ve spent on that code.

You want to look for an overlap between the two metrics. That’s why CodeScene presents you with a
sorted table of your hotspots. Fig. 2.3 shows an example from the Android codebase.

From here you can:

• Click on a hotspot in the table to zoom in on it in the Hotspots Activity Map.

• Click outside the hotspot to zoom out.

13

CHAPTER 2. GUIDES

Fig. 2.3: Hotspots in the Android codebase.

• View the complexity trend of the Hotspot by clicking on the trend buttons (see :doc:
guides/technical/complexity-trends).

Explore your Hotspots

A large codebase may contain many different hotspots. You will also notice clusters of hotspots, which
may indicate that a whole component or package is undergoing heavy changes.

The Hotspots Activity Map in CodeScene lets you explore your whole codebase interactively as illustrated
in Fig. 2.4.

The hotspots map is interactive and hierarchical; Each large blue circle represents a folder in your
codebase. That means you can zoom in and out to the level of detail you’re interested in:

• Click on one of the large, blue circles representing a directory to zoom in on its content.

• Click on a Hotspot to view information about it and to access its context menu to run detailed
analyses.

• Click outside the circle representing a zoomed in folder to zoom out again.

• Hover the mouse over a circle to see information about the module it represents.

The most common interaction is to click on a Hotspot to get more details about it as illustrated in Fig.
2.5

Let’s look at some use cases now that you know how the Hotspots analysis works.

Know how to use Hotspots

A Hotspot Map has several use cases and also serves multiple audiences like developers and testers:

• Developers use hotspots to identify maintenance problems. Complicated code that we have to work
with often is no fun. The hotspots give you information on where those parts are. Use that
information to prioritize re-designs.

14

CHAPTER 2. GUIDES

Fig. 2.4: Hotspots show you the activity in your codebase.

Fig. 2.5: Click on a Hotspot to access the context menu.

15

CHAPTER 2. GUIDES

• Hotspots points to code review candidates. At Empear we’re big fans of code reviews. Code reviews
are also an expensive and manual process so we want to make sure it’s time well invested. In this
case, use the hotspots map to identify your code review candidates.

• Hotspots are input to exploratory tests. A Hotspot Map is an excellent way for a skilled tester
to identify parts of the codebase that seem unstable with lots of development activity. Use that
information to select your starting points and focus areas for exploratory tests.

Use Hotspots in your Daily Work

How well does Hotspots work in practice? Well, it turns out there’s strong scientific support behind the
metric. The research has often focused on bug predictions, which is relevant since bugs are one of the
main issues behind expensive software maintenance.

The book “Your Code as a Crime Scene” (Tornhill, 2015) dives deeper into those research findings to
explain why and how Hotspots work. But let’s just summarize the conclusions in one line: There’s a
strong correlation between Hotspots, maintenance costs and software defects. Hotspots are an excellent
starting point if you want to find your productivity bottlenecks in code.

That means you want to take your Hotspots seriously. Our recommendation is to run a Hotspot analysis
at least once a week. It’s also a good idea to share your findings with your team. Why not gather
everyone around a Hotspot Map every now and then?

2.1.2 Temporal Coupling

Temporal Coupling means that two (or more) modules change together over time. Exploring Temporal
Coupling in our codebases often gives us deep and unexpected insights into how well our designs stand
the test of time.

Understand Temporal Coupling

CodeScene provides several different metrics for temporal coupling. The tool considers two modules
coupled in time:

• if they are modified in the same commit, or

• if they are modified by the same programmer within a specific period of time, or

• if they refer to the same Ticket ID in their commit messages.

The temporal coupling graph in CodeScene shows a hierarchical view of your temporal coupling. Hover
over a label in the graph to highlight its dependants as illustrated in Fig. 2.6.

The initial graph is great to spot interesting temporal dependencies (we’ll discuss them soon). CodeScene
also presents a tabular view of the temporal coupling in your system, as illustrated in Fig. 2.7.

Coupled Entities Two files that tend to change together over time.

Degree of Coupling How often the files change together. The first pair in Fig. 2.7 change together 74%
of the time.

Average Revisions This measure is used to filter out temporal couples that don’t pass a configurable
threshold. We do not want to consider two files coupled just because they were created in the same
commit.

In this guide you’ll see just how powerful Temporal Coupling is. The more experience we get with the
analysis, the more use cases there seem to be. For example, you’ll learn to use the Temporal Coupling
results to:

• Detect software clones (aka copy-paste code).

• Evaluate the relevance your unit tests.

• Detect architectural decay.

16

CHAPTER 2. GUIDES

Fig. 2.6: Hover over a file in the temporal coupling graph to see its dependants.

Fig. 2.7: The temporal coupling table gives you all the details.

17

CHAPTER 2. GUIDES

• Find hidden dependencies in your codebase.

Explore Your Physical Couples

Why do two source code files change together over time? Well, the most common reason is that they
have a dependency between them; one is the client of the other. Fig. 2.8 shows an example of such a
case.

Fig. 2.8: Temporal sample on unit test.

As you see in the picture above, a unit test tends to change together with the code under test. This is
expected. In fact, we’d be surprised if the temporal coupling was absent - that would be a warning sign
since it indicates that your tests aren’t being kept up to date or aren’t relevant.

A physical dependency like this is something you can detect from the code alone. But remember that
Temporal Coupling isn’t measured from code; Temporal Coupling is measured from the evolution of the
code. That means you’ll sometimes make unexpected findings.

Look for the Unexpected

Always look for unexpected temporal couples. As soon as you find a logical dependency that you cannot
explain, make sure to investigate it. Fig. 2.9 shows an example.

Fig. 2.9: Unexpected temporal coupling.

The table in Fig. 2.9 shows a strong temporal coupling between a LinkTagHelper.cs and a Script-
TagHelper.cs. You also see that their unit tests tend to be changed together.

18

CHAPTER 2. GUIDES

While those two classes seem to solve related aspects of the same problem, there’s no good reason why
a change to one of them should imply that the other one has to be changed as well.

When you find an unexpected change pattern like this you need to dig into the code and understand
why. This is where CodeScene’s X-Ray feature proves invaluable (see X-Ray (page 26)).

As you X-Ray a temporal coupling cluster you’ll often find that there’s some duplication of both code and
knowledge. Extracting that common knowledge into a module of its own breaks the temporal coupling
and makes your code a bit easier to maintain. You see, temporal coupling often suggests refactoring
candidates.

Investigate Temporal Dependencies across Architectural Boundaries

Temporal Coupling is like bad weather - it gets worse with the distance you have to travel. In our code,
it’s a big difference if we need to modify two files located in the same package versus modifying files
in different parts of the system. That’s why you want to look for temporal dependencies that cross
architectural boundaries.

On a side note, some architectures will lead you to exactly those expensive change patterns. The most
notable one is a layered architecture. You will often find that most new features implies modifying the
majority of your layers. Temporal Coupling helps you keep track of it and assess the situation.

Use Temporal Coupling to predict Omissions

So far you probably got the impression that Temporal Coupling is something to avoid. And you’re right.
At least in the majority of all cases. But there are some situations where you actually wants Temporal
Coupling:

• You want your unit tests to evolve with the code under test.

• You want your documentation to be updated together with the system it describes.

• You have parallel implementations for different platforms.

The final point is particular interesting since it shows one of the main strengths of Temporal Coupling:
you can identify change patterns across different languages and techniques. Fig. 2.10 shows an example
from Roslyn, Microsoft’s open source compiler platform.

If you have expected Temporal Coupling like this then use it to your advantage. Use the knowledge of
your existing development patterns to guide your code reading, commits and to plan your modifications.

Dig Deeper with Sum of Coupling

Sometimes, it may be hard to prioritize if you have a lot of temporal couples in your codebase. In that
case, use the Sum of Coupling results to guide and prioritize amongst your temporal couples.

Sum of Coupling is a measure of how often a specific file in your codebase is changed together with
another file (any other file). The idea is that files that often changes together with others are significant
from an architectural perspective.

Change the Temporal Coupling Thresholds depending on your Codebase

In order to avoid biases like large re-organizations of the codebase, CodeScene lets you configure a
threshold value for the maximum changeset to consider. This is something you specify in the analysis
configuration for your project as illustrated in Fig. 2.11.

The settings in Fig. 2.11 means that the temporal coupling algorithm will respect the following thresholds:

1. Ignore all files with less than 10 revisions/commits since the coupling may be accidental.

19

CHAPTER 2. GUIDES

Fig. 2.10: Temporal coupling between languages.

Fig. 2.11: Temporal coupling configuration.

20

CHAPTER 2. GUIDES

2. Ignores all temporal couples that haven’t co-evolved in at least 10 shared commits since the coupling
trend isn’t strong enough yet.

3. Ignores all temporal couples with less than 50% strength to filter out the most important coupling.

4. Ignores all changesets/commits where more that 50 files were changed together since we want to
limit potential false positives.

You’ll find that the default values are typically good enough for you initial analyses. You typically lower
the thresholds in case you don’t find any temporal coupling. Similarly, you increase the thresholds if you
analyze a large codebase and get too much analysis data.

Finally, please note that CodeScene lets you specify the thresholds for “Temporal Coupling By Commits”
separate from “Temporal Coupling Across Commits”. The rationale is because you typically want to use
lower thresholds when identifying patterns across commits in different repositories.

Complement Your Intuition

If you’re an experienced developer that has contributed a lot of code to a particular project then you
probably have a good feeling for where the most significant Hotspots will show-up. You may still get
surprised when you run an analysis, but in general most analysis findings will match your intuitive guess.
Temporal Coupling is different. We developers seem to completely lack all kind of intuitive sense when
it comes to Temporal Coupling.

A Temporal Coupling analysis often gives us deep and unexpected insights into how well our designs
stand the test of time.

2.1.3 Complexity Trends

Complexity Trends are used to get more information around our Hotspots.

Once we’ve identified a number of Hotspots, we need to understand how they evolve; Are they Hotspots
because they get more and more complicated over time? Or is it more a question of minor changes to a
stable code structure? Complexity Trends help you answer those questions.

Complexity Trends are calculated from the Evolution of a Hotspot

A Complexity Trend is calculated by fetching each historic version of a Hotspot and calculating the code
complexity of those historic versions. The algorithm allows us to plot a trend over time as illustrated in
Fig. 2.12.

The picture above shows the complexity trend of single hotspot, starting in mid 2015 and showing its
evolution over the next year. It paints a worrisome picture since the complexity has started to grow
rapidly.

Worse, as evident by the Complexity/Lines of Code ratio shown in Fig. 2.13, the complexity grows
non-linear to the amount of new code, which indicates that the code in the hotspot gets harder and
harder to understand. You also see that the accumulation of complexity isn’t followed by any increase
in descriptive comments. So if you ever needed ammunition to motivate a refactoring, well, it doesn’t
get more evident than cases like this; This file looks more and more like a true maintenance problem.

We’ll soon explain how we measure complexity. But let’s cover the most important aspect of Complexity
Trends first. Let’s understand the kind of patterns we can expect.

Know your Complexity Trend Patterns

When interpreting complexity trends, the absolute numbers are the least interesting part. You want to
focus on the overall shape and pattern first. Fig. 2.14 illustrates the shapes you’re most likely to find in
a codebase.

Let’s have a more detailed look at what the three typical patterns you see above actually mean.

21

CHAPTER 2. GUIDES

Fig. 2.12: A complexity trend sample.

Fig. 2.13: A complexity trend sample.

Fig. 2.14: Complexity trend patterns you might find in a codebase.

22

CHAPTER 2. GUIDES

The Pattern for Deteriorating Code

The pattern to the left, Deteriorating Code, is a sign that the Hotspot needs refactoring. The code has
kept accumulating complexity. Code does that in either (or both) of the following ways:

1. Code Accumulates Responsibilities: A common case is that new features and requirements are
squeezed into an existing class or module. Over time, the unit’s cohesion drops significantly. The
consequence of that for our ability to maintain the code is severe; We will now have to change
the same unit of code for many different reasons. Not only does it put us at risk for unexpected
feature interactions and defects. It’s also harder to re-use the code and to modify it due to the
excess cognitive load we face in a module with more or less related functionality.

2. Constant Modification to a Stable Structure: Another common reason that code become hotspots
is because of a low-quality implementation. We constantly have to re-visit the code, add an if-
statement to fix some corner case and perhaps introduce that missing else-branch. Soon, the code
becomes a maintenance nightmare of mythical proportions (you know, the kind of code you use to
scare new recruits).

Complexity Trends let you detect these two potential problems early. Once you’ve found them, you need
to refactor the code. And Complexity Trends are useful to track your improvements too. Let’s see how.

Track Improvements with Complexity Trends

Have one more look at the picture above. You see the second pattern, “Refactoring”? A downward slope
in a complexity trend is a good sign. It either means that your code gets simpler (perhaps as those nasty
if-else-chains get refactored into a polymorphic solution) or that there’s less code because you extract
unrelated parts into other modules.

Now, please pat yourself on the back if you have the Refactoring trend in your hotspots - it’s great! But
do keep exploring the complexity trends; What often happens is that we spend an awful amount of time
and money on improving something, fail to address the root cause, and soon the complexity slips back
in. Fig. 2.15 illustrates one such scary case.

Fig. 2.15: Example on failed refactoring.

23

CHAPTER 2. GUIDES

You might think this a special case. But let me assure you - during the work on these analysis techniques
we analysed hundred of codebases and we found this pattern more often than not. So please, make it a
habit to supervise your complexity trend.

Stable Trends May Indicate Problems Too

The final pattern that I want us to discuss is “Only minor modifications”. You see an example on that
in Fig. 2.16.

Fig. 2.16: Minor modifications example.

“Minor modifications” - doesn’t that sound good? Well, have to to put it into context; The reason you
explore a Complexity Trend is because the file is a Hotspot. If a file has become a Hotspot, it means
we’re making a lot of modifications to it. That’s a warning sign.

Even if the code itself doesn’t become worse of time, as evident by the trend, all those small changes
are still bound to be expensive and, potentially, high risk. The key to efficient software maintenance is
the opposite: you want to stabilize as much of your codebase as you can in terms of development. If a
piece of code keeps changing, no matter how small those changes are, it’s a sign that either the problem
domain isn’t well understood or the code fails to model it properly.

Taken together, the “minor modifications” pattern in a Hotspot is a sign that you should try to identify
the kinds of modifications you do and try to encapsulate them. This step often involves extracting small,
cohesive modules from the Hotspot. The X-Ray feature in CodeScene (see X-Ray (page 26)) can help
you with that by showing you when and where you should focus your efforts.

Get Deeper Insights with Descriptive Statistics

The Complexity Trend view presents three additional charts with descriptive statistics:

1. Max value: This is the maximum complexity value of a single line of code over time. This graph
lets you identify pockets of complexity that need refactoring.

2. Median value: The median is the complexity value that separates the higher half of values from
the lower half. An increase in median is a sign that your code doesn’t just grow in terms of new
lines; Rather, it’s a sign that the existing code becomes more complicated.

24

CHAPTER 2. GUIDES

3. Standard Deviation: A standard deviation tells you how much the complexity of individual lines
vary. The lower the standard variation figure, the more alike the lines of code in your program
(probably a good sign).

The descriptive statistics require some training to interpret. But as a rule of thumb: if any trend
increases, that’s a bad sign.

What’s “Complexity” anyway?

Alright, we said that Complexity Trends calculate the complexity of historic versions of our Hotspots.
So what kind of metric do we use for complexity?

The software industry has several well-known metric. You might have heard about Cyclomatic Com-
plexity or Halstead’s volume measurement. These are just two examples. What all complexity metrics
have in common, however, are that they are pretty bad at predicting complexity!

So we’ll use a less known metric, but one that has been shown to correlate well with the more popular
metrics. We’ll use indentation-based complexity as illustrated in Fig. 2.17

Fig. 2.17: Explaining whitespace complexity.

Virtually all programming languages use whitespace as indentation to improve readability. In fact, if
you look at some code, any code, you’ll see that there’s a strong correlation between your indentations
and the code’s branches and loops. Our indentation-based metric calculates the number of indentations
(tabs are translated to spaces) with comments and blank lines stripped away.

Indentation-based complexity gives us a number of advantages:

• It’s language-neutral, which means you get the same metric for Java, JavaScript, C++, Clojure,
etc. This is important in today’s polyglot codebases.

• It’s fast to calculate, which means you don’t have to wait half a day to get your analysis results.

Know the Limitations of Indentation-Based Complexity

Of course, there’s no such thing as a perfect complexity metric. Indentation-based complexity has a
number of pitfalls and possible biases. Let’s discuss them so that you can keep an eye at them as you

25

CHAPTER 2. GUIDES

interpret the trends in your own code:

• Sensitive to layout changes: If you change your indentation style midway through a project, you
run the risk of getting biased results. In that case you need to know at what date you made that
change and use that when interpreting the results.

• Sensitive to individual differences in style: Let’s face it - you want a consistent style within the
same module. Inconsistent indentation styles makes it harder to manually scan the code. So please
settle on a shared style.

• Does not understand complex language constructs: There are certain language constructs that
indentation-based complexity will treat as simple although the opposite may hold true. Examples
include list compressions and their relatives like the stream API in Java 8 or LINQ in .NET. On
the other hand, it’s common to add line breaks and indent those constructs as well.

Alright, we’re through this guide on Complexity Trends and you’re ready to explore the patterns in your
own codebase. Just remember that, like all models of complex processes, Complexity Trends are an
heuristic - not an absolute truth. They still need your expertise and knowledge about the codebase’s
context to interpret them.

2.1.4 X-Ray

X-Ray gives you Deep Insights into your Code

Hotspots are code with high change frequencies. We know that any improvements we do to a hotspot are
likely to pay-off immediately. However, sometimes those improvements aren’t straightforward; Some of
the worst hotspots we’ve seen are files with several thousands lines of code. Given that amount of code,
where do we start? Are all parts of that file equally important? Are there any functions or methods that
contribute more to the code being a hotspot than others?

Until recently, this is where the CodeScene analyses stopped. After all, we’ve significantly reduced
the amount of code we need to consider as we narrowed down a whole codebase to a single file where
improvements matter. However, we need to do even better and CodeScene’s X-Ray feature fills this gap.

X-Ray is a language-dependent analysis. X-Ray is available for the following programming languages:

• C

• C++

• C#

• Java

• Clojure

• Ruby

• Python

• Erlang

• Scala

• JavaScript/ECMAScript

We’ll continue to add support to X-Ray for more programming languages over time. As always: if you
lack support for a language, let us know and we’ll make it happen.

An Overview of X-Ray

X-Ray is an analysis that operates on the function/method level of your code. Thus, X-Ray is able to
provide deep and detailed information on what’s happening inside a Hotspot.

There are three main use cases for the X-Ray functionality:

26

CHAPTER 2. GUIDES

1. X-Ray lets you make sense of large files and get specific recommendations on the parts to improve.

2. X-Ray provides detailed information on why a cluster of files are temporally coupled.

3. X-Ray recommends re-structuring opportunities on the methods in your Hotspots in order to make
the code easier to understand and maintain.

In the following guide we’ll cover all of these cases. Let’s start with how you can make sense of large
files.

X-Ray calculates Hotspots on a Method Level

A Hotspot analysis is orthogonal to the data it operates on. That is, CodeScene presents hotspots as
individual files, but also on an architectural level as entire components and sub-systems. With X-Ray,
we climb down the abstraction ladder and run a Hotspot analysis on a method level.

A large file is like a system in itself. Some parts remain stable, while other parts of the file keeping
changing as new features are added and bugs get resolved. With X-Ray, you’ll get a prioritized list of the
methods you want to refactor and improve first. This is important since re-designing a large module is
both high-risk and expensive. So instead you want to take an iterative approach to your improvements
and base those improvements on data.

To run X-Ray, go to your Hotspot map, click on the Hotspot and select ‘X-Ray’ from the context menu
as shown in Fig. 2.18.

Fig. 2.18: Run X-Ray from the context menu.

X-Ray is run on demand. That is, the first time you execute it on a Hotspot it may take a few seconds
to get the results. Sub-sequent accesses are cheap since we cache the results.

Once you get the results you’ll see that you typically spend more time on some methods than others.
So let’s walk through the X-Ray results and look at the individual pieces. Have a look Fig. 2.19 as a
starting-point.

Fig. 2.19 shows the results of an X-Ray analysis. We see that our hotspot is a method named CreateIn-
voker, which consists of 193 lines of code. This method is where you’d like to focus your refactoring
efforts; The high change frequency of the method indicates that improvements are likely to pay-off
immediately.

You also see that each row in the table above lets you run a Complexity Trend analysis. In this case, the
trend analysis will show the complexity growth of an individual method. Look at the results of those

27

CHAPTER 2. GUIDES

Fig. 2.19: The starting point in an X-Ray analysis.

trends to determine if the X-Ray hotspot represents a method that we’ve already started to refactor or,
the more common case, represents code that continues to degrade in quality.

X-Ray calculates Temporal Coupling between Methods

As you X-Ray a Hotspot, CodeScene also looks for temporal coupling between individual methods in
that file. This is information that helps you identify unexpected change patterns. Let’s look the example
in Fig. 2.20.

Fig. 2.20: X-Ray calculates temporal coupling between the methods in your Hotspot.

Fig. 2.20 shows that two methods, CreateInvoker and Invoke_UsesDefaultValuesIfNotBound changes
together in 60% of all changes. That is, every second time you change one of these methods there’s a
predictable change to the other one.

You use the Temporal Coupling results as input to your refactoring efforts. For example, in the example
above, you probably want to have a close look at both methods to see why they are so strongly coupled
in time. Often, there’s either a leaky abstraction or a fair chunk of duplicated logic in either part of the
code.

28

CHAPTER 2. GUIDES

X-Ray lets you look into Temporal Coupling Clusters

Temporal Coupling is one of the most powerful software analyses in our arsenal. A temporal coupling
analysis often highlights unexpected change patterns in our codebase and provides us with important
information that we cannot deduce from the code alone. However, temporal coupling has also been one
of the hardest results to act upon.

Think about it for a minute. Let’s say that you investigate some temporal coupling results and identify a
cluster of 10 files that tend to change together. Now, how do you uncover the reason for this coupling in
time? Well, in more complex cases you need to compare the code and walk through the historic revisions
to know which parts of the files that are responsible for the coupling. This can be painful, particularly
for large files that are low on cohesion. Enter X-Ray for temporal coupling.

With X-Ray, all of these steps are completely automated. You just click on a file in the temporal coupling
visualization and select ‘X-Ray’ from the context menu as illustrated in Fig. 2.21.

Fig. 2.21: X-Ray lets you investigate temporal coupling clusters in detail.

Once X-Ray is done, you’re presented with a dependency wheel on method level. Have a look the
dependency wheel in Fig. 2.22 and I’ll walk you though the details.

The dependency wheel in Fig. 2.22 is an interactive visualization. As you see in the example above,
when we hover over the part that represents the method RendersLinkTagsForGlobbedHrefResults, we see
that the method is coupled in time to six other methods located in a different class. This information is
powerful: now we’ve limited the amount of code you need to inspect in order to improve the design and
break this expensive change pattern.

X-Ray detects Software Clones

Temporal coupling arises for several reasons. It’s also important to note that all coupling isn’t bad. For
example, you’d expect a unit test to change together with the code under test. However, in the case
where you can’t think about any good reason two pieces of code keep changing at the same time you’ll
inevitably find a refactoring opportunity.

One of the most common reasons for unexpected temporal coupling is a dear old friend: copy-paste. In
fact, copy-paste is so common that we’ve included an analysis of code similarity in X-Ray.

You get to the code similarity analysis by clicking at the result tab for External Temporal Coupling
Details as illustrated in Fig. 2.23.

29

CHAPTER 2. GUIDES

Fig. 2.22: The dependency wheel shows the temporal coupling between methods.

Fig. 2.23: The Code Similarity analysis let you uncover copy-paste code.

30

CHAPTER 2. GUIDES

In Fig. 2.23 you see that there are two methods with the same name, but located in different classes, that
have a code similarity of 98%. You want to use this data as a starting point. If you could encapsulate
that shared logic in a separate method that you re-use between the two classes your temporal coupling
will go away. Your application will become a little bit easier to maintain.

A word on Software Clone Detection

Copy-paste detection isn’t exactly a new technique. However, it’s still far from mainstream in the software
industry. One reason that copy-paste detectors haven’t caught on is because they fail to prioritize their
findings in a sensible way.

If you look at studies of large codebases, you’ll learn that around 5-20% of all large codebases represents
duplicated logic to some degree. That’s quite a lot. There’s simply no way you can start to refactor
that amount of code and hope to get a return on that investment. In fact, most of that duplicated code
doesn’t matter. So how can we find the software clones that limit out ability to maintain the system?

CodeScene’s X-Ray solves this dilemma. By combining copy-paste detection with temporal coupling we
know that the identified software clones matter. For example, if you look at the example above, you’ll
see that the two methods with a code similarity of 98% are changed together in one third of all cases.
That is, with X-Ray you’ll find the software clones that actually matter. This lets you prioritize the
improvements that you do while still ensuring that you get a real return on those refactoring investments.

Follow the Restructuring Recommendations

Empear’s CodeScene is the first ever software analysis tool that implements a proximity analysis. The
X-Ray findings present the proximity results as a set of recommendations on how to re-structure the
methods in a Hotspot in order to make the code more readable. Let’s start by understanding the concept
of proximity and why it matters to our ability to maintain code.

The proximity principle focuses on how well organized your code is with respect to readability and
change. You use proximity both as a design principle and as a heuristic to evaluate the cohesion and
structure of existing code.

The principle of proximity is a concept from Gestalt psychology. The Gestalt movement pioneered
principles on how we make sense of all chaotic input from our sensory systems. We need to understand
the Gestalt principles if we want to optimize our code for readability. Remember, we use the same brain
to interpret code as we use to make sense of the physical world.

Within Gestalt psychology, the principle of proximity specifies that objects or shapes that are close to
one another appear to form groups as illustrated in Fig. 2.24. If we translate this to software, it means
that readable code is structured in a way that lets our brain understand parts of the source code file as
a whole. The main reason is because we want our code to support our change patterns: code that is
expected to be changed together should be close. Such a code structure serves as a powerful reminder
to both the programmer and, more important, the code reader that a set of functions belong together.

CodeScene measures proximity based on your change patterns (aka internal temporal coupling). You see
an example on a proximity analysis in Fig. 2.25 from the implementation of the Clojure programming
language.

The highlighted recommendation in Fig. 2.25 shows two functions, hash-map and array-map, that are
frequently changed together. That is, they are temporally coupled. However, if you look at the imple-
mentation in the Clojure project you’ll see that there are thousands of lines of code between hash-map
and array-map. This is bad news for a maintenance programmer because it’s so easy to miss an update to
one of the functions. A simple, low-risk refactoring is to just move those two functions next to each other.
That simple change lets the code signal that the functions belong together. In addition it dramatically
increases the chances that a bug fix to one of the functions is applied to the other function too.

So what metric do we use for proximity? If you look at Fig. 2.25 you see that there’s a Total Proximity
column in the analysis results. The proximity values specify the distance between the related functions.
The unit of measure is the number of intermediate functions between the related parts. In our example
with hash-map and array-map Fig. 2.25 shows that there’s a total proximity of 299. That means that

31

CHAPTER 2. GUIDES

Fig. 2.24: An illustration of the Principle of Proximity where our brain forms groups of related objects.

Fig. 2.25: The Proximity Analysis recommends re-structuring of the methods in a Hotspot.

32

CHAPTER 2. GUIDES

there are 299 (!) functions separating the implementation of hash-map from its related temporally
coupled array-map.

Know the limitations of Method-level analyses

CodeScene tracks renamed content. That is, if you move or rename a file, we make sure to fetch its past
history even if you’ve renamed the file multiple times. We implement a similar mechanism for X-Ray
too. X-Ray will track and analyze the history of renamed methods/functions...except when it won’t.
Let’s elaborate on that so that you know the possible corner cases.

First of all we have a philosophical question here. Let’s say you decide to refactor parts of your code.
You simplify some parts of it and rename a few functions. Now, when is a function renamed and when
is it actually a new function that replaces an old one? This distinction isn’t clear.

X-Ray resolves this dilemma by introducing a set of heuristics for its rename detection:

1. We consider a method/function renamed if its name is changed without any changes to the method
body.

2. We also consider a method renamed if its name is changed and their are minor modifications to its
method body.

3. X-Ray doesn’t do rename detection for methods that it considers too small (e.g. single line get-
ters/setters).

So if you want to ensure that your renamed methods are being tracked past the rename, please make sure
that you do the renaming in one commit and possible method body modifications in another commit.
It’s usually a good refactoring practice anyway.

In general, X-Ray tries to do the most sensible thing. Without the rules above, you’d risk false positives
in your analysis results. That’s prevented now at the possible cost that X-Ray will miss the occasional
rename. This is a better trade-off since if the renamed function is a Hotspot, it will most likely continue
to change at a rapid rate and X-Ray detects that anyway.

Increase the Depth of the Analysis

By default, X-Ray will look at a maximum of 200 revisions. In most codebases that’s more than enough.
So why put a limit on it? Well, there are projects that have been around for a long time and their top
Hotspots may well have over thousands of commits. To X-Ray that data will take quite some time. In
addition, the most interesting patterns are likely to be in the recent evolution of the Hotspot.

Most of the time this is the behavior that you want. However, in case you want to dive deeper and
X-Ray the complete evolution of a Hotspot you need to instruct CodeScene to do that. This choice is a
simple matter of configuration as illustrated in Fig. 2.26.

Fig. 2.26: The project configuration lets you X-Ray all revisions of a Hotspot.

33

CHAPTER 2. GUIDES

2.1.5 Code Churn

Code churn is a measure that tells you the rate at which your code evolves. Code churn has several
usages:

• Visualize your development process: Your code churn signature in the diagrams below mirrors the
practices you use to deliver code. You may want to watch out for regular spikes, which may hint
at a mini waterfall going on in your daily work

• Reason about delivery risks: Code churn is a good predictor of post-release defects. Thus, it’s a
warning sign if you approach a deadline while your code churn increases. That’s a sign that the
code gets more and more volatile the closer you get to your deadline. You want the opposite. You
want to stabilize more and more code the closer you get to delivery.

CodeScene provides several churn measures. They’re all described in this guide and you typically inves-
tigate all of them to get the overall trend in your codebase.

Use the Commit Activity as the Pulse of your Codebase

The commit activity chart shows the number of commits and contributing authors over time as illustrated
in Fig. 2.27.

Fig. 2.27: The commit activity chart.

The number of commits and authors over time is a different kind of churn. This metric will typically
correlate well with your other Code Churn metrics described below. However, you want to look out for
potential productivity issues like an increase in authors without a corresponding increase in commits
and churn; Such a trend often indicates that you’ve more programmers contributing than the software
architecture (and/or organization) can support.

Uncover Long-term Trends in your Code Churn Rolling Average

CodeScene measures two separate churn metrics: the number of added lines of code, and the number of
deleted lines. The values in the graph shows the rolling average of your code churn (rolling average is a
technique to smooth out sudden fluctuations in your data). You configure a time window for the rolling
average in your project configuration.

The main use of these code churn metrics is to reason about delivery risks; If you’re close to a deadline
and have a rising churn, you might want to understand why. After all, an increase in churn means that
the codebase has become more and more volatile. Unless you have an extensive safety net in terms of

34

CHAPTER 2. GUIDES

tests and continuous deployment techniques, you probably want to stabilize before a release as illustrated
in Fig. 2.28.

Fig. 2.28: Use code churn to reason about delivery risk.

2.1.6 Code Age

Code Age is a much underused driver of software design. In this guide we’ll cover how you interact with
the analysis results and how you use the presented information to guide your architectural decisions.

Drive to Stabilize

Code evolve at different rates. As you’ve learned in the Hotspots Guide (see Hotspots (page 12)), some
parts of your codebase tend to change much more frequently than others. The Code Age Analysis gives
you another powerful evolutionary view of your system. It’s a view that helps you evolve your codebase
in a direction where the system gets easier to maintain and more stable.

The age of code is a factor that should (but rarely do) drive the evolution of a software architecture. In
general, you want to stabilize as much code as possible. A failure to stabilize means that you need to
maintain a working knowledge of those parts of the code for the life-time of the system.

How do we measure Code Age?

CodeScene measures code age per source code file (or any content, actually). We define the age of code
as “the time of the last change to the file”. Note that this means any change. It doesn’t matter if you
rename a variable, add a single line comment or re-write the whole module. All those changes are, in
the context of Code Age, considered equal.

This definition is fairly rough and in the future we’re likely to take the amount of change to a file into
account when calculating age. But for now, age is that time since the last change. And the resolution is
months.

Inspect your Code Age Distribution

The age distribution graph shows how much of your codebase that you have managed to stabilize.

The example graph in Fig. 2.29 shows a codebase under heavy development. As you see, 20% of the
source code files have been modified the past month. Here’s how you use this information:

• See how much of the code you manage to stabilize.

• Identify sub-systems that have become commodities.

35

CHAPTER 2. GUIDES

Fig. 2.29: An example of code age distribution.

Let’s discuss these two points. First of all, you want to stabilize as much code as possible. Stable
code means that its quality is known. It also limits the size of the codebase where a developer has to
maintain an active mental model of the code. New code (0-2 months old) is of course where the current
development happens and you expect some activity here; a system that doesn’t change is a system that
no one uses. What you want to look out for is everything in between. That is, the code that’s neither
particularly old nor do we need to work with it on a monthly basis.

The reason we’d like to avoid having code that is neither old nor new has to do with human forgetting.
Such code is old enough that the original programmers are unlikely to remember the details. If we need
to dig into code that we no longer remember well, we pay a high price. So please watch out for a codebase
where you have a flat distribution.

The second use case for Code Age Distribution is to identify commodities. A commodity is code that’s
been stable for a long time. You see an example from the development of the Clojure programming
language in Fig. 2.30.

This is a good starting point; If you have a lot of code, as in the distribution in Fig. 2.30, that you haven’t
modified in years, there’s an opportunity to drive your software architecture in a leaner direction. To do
that we need to get more information. We need to understand where in the codebase those stable parts
are. That information is provided in the Age Ring View that we discuss below. Before we get there,
however, we need to be aware of some possible biases.

Possible sources of Bias in the Age Distribution

As noted above, code age is measured since the time of any change to a file. That means, if you re-
organize your codebase by moving source code files to different folders, your code will appear much
younger than it actually is.

Unfortunately we do not provide a way to counter this bias in the current version of CodeScene. But
please stay tuned for future versions where we’ll solve this.

36

CHAPTER 2. GUIDES

Fig. 2.30: Code age distribution in Clojure.

Fig. 2.31: Annual rings of a tree.

37

CHAPTER 2. GUIDES

Identify Stable and Unstable Sub-Systems in the Age Ring View

So, the Code Age Distribution told us that we’ve a lot of code that we haven’t modified in a long time.
The Age Ring View lets you identify where those stable parts are.

Think of the Age Ring View as the annual rings of a tree, but for code. You specify a cut-off point for
the age you’re interested in and inspect the resulting view.

You select the cut-off point based on the Age Distribution in your codebase. The cut-off point should
mean something in your context. For example, we noted above the the Clojure codebase has a lot of
code that’s older than two years. Fig. 2.32 hows how we find that code.

Fig. 2.32: Stable code in Clojure.

Extract Stable Packages as Libraries

Once you’ve found stable packages you may want to consider to extract them as packages. If we transform
stable packages into libraries we get a set of advantages:

• Stable code lets us maintain long-term cognitive models: The developers now only needs to focus
on the API of these packages.

• Minimize cognitive load for new developers: As a direct consequence, new developers have less code
to understand as they enter your codebase. Age is not something that’s visible in the code itself
and it’s thus hard to know if I, as a developer, have to understand that part of the system or not.

38

CHAPTER 2. GUIDES

• Know where extra tests add most value. You may want to write a set of high-level automated
checks around your extracted packages. Those test scripts would capture your understanding of
the package and ensure your expectations are correct. Since the code under test is stable, your
tests will be stable as well. The reason you have them is so that you can ensure that you don’t
break existing code when you someday have to modify a part that is a known commodity in your
system.

• Know which tests you don’t have to run in each build. Once you stabilize code, you don’t need to
run the unit-, function-, integration-tests for that part in every single build. That means you can
shorten your delivery cycle by ignoring tests in the parts of the system that haven’t been changed
for ages.

Identify Parts That Fail to Stabilize

Sometimes you’ll find a package (component, sub-system, etc) whose parts change at different rates as
in Fig. 2.33

Fig. 2.33: Code that stabilizes at different rates.

Code in the same package/subsystem that change at different rates is a warning sign. It either means
that 1) some of the code is of lower quality and we need to patch it often or 2) the parts model different
aspects of the problem domain.

Our general recommendation is to try to split packages by the age of the elements contained within them.
That is, organize your code by age. Consider the same strategy for larger files that fail to stabilize. Split
their content into several, cohesive files. That way, you’ll get information on what parts of the problem
domain that are volatile and the parts that are stable.

Use Code Age to assess Knowledge Loss

A Code Age analysis has more usages than just software architecture. If you have areas of Knowledge
Loss in your codebase you can use Code Age to assess how severe the loss is. Is the abandoned code a
part that has been under active development recently? In that case, I would worry. If not, things look
better. Sure, you get a knowledge gap with each developer that leaves, but that gap is in a part of the
system that you haven’t been working on for a long time. Besides, since that code is so old, it’s also
likely that the original developers, even if they were still present, would have a learning curve themselves.

39

CHAPTER 2. GUIDES

2.2 Architectural

2.2.1 Architectural Analyses

CodeScene’s architectural analyses lets you run Hotspots, Temporal Coupling and more on the architec-
tural level of your high level design. The results give you the power to evaluate how well your architecture
supports the evolution of your system.

What’s an Architectural Component?

An Architectural Component is a logical building block in your system. For example, if you build
a Microservices architecture, each microservice could be considered a logical block. Similarly, if you
organize your code in layers (MVC-, MVP-, MVVM-patterns, etc), each layer would be a logical block.

Fig. 2.34: An example of architectural components.

An Architectural Component could also be much more coarse. For example, let’s say that you’re inter-
ested in the co-evolution of your application code versus the test code. Perhaps because you suspect that
you spend way too much effort on keeping your automated tests up to date. In that case, you’d define
two Architectural Components: Application Code and Automated Tests.

So, the short answer is that what you consider an Architectural Component depends upon your architec-
tural style. You want to specify components that help you answer the questions you have. For example,

40

CHAPTER 2. GUIDES

do the change patterns in the code match the intent of the architecture? Often, the potential for large
maintenance savings are found in these architectural analyses once you spot patterns that violate your
architectural principles.

Define your Architectural Components

You need to configure your Architectural Components in order to enable the corresponding analyses.

CodeScene offers flexibility in how you define your components. The tool uses glob patterns to identify
the files that belong to a specific component as illustrated in Fig. 2.35.

Fig. 2.35: Configure architectural components by specifying glob patterns for each logical component.

As you see in the picture above, you need to specify a pattern and the name of your component. All
content in your codebase that matches your glob pattern will be assigned to an architectural component
with the name you specified. For example, in the configuration above, all content below ‘spacein-
vaders/source/sprites’ will be considered as the component Sprites. Note that you can provide much
more granular filters and, with the power of glob patterns, even match individual files.

Interpret the Architectural Analysis Results

The Architectural Analyses lets you focus on logical building blocks rather than individual files. This
allows you to identify architectural Hotspots, as shown in Fig. 2.36.

The architectural analyses also let you identify expensive modification patterns where code changes ripple
through multiple logical components, as seen in in Fig. 2.37.

2.3 Social

2.3.1 Social Networks

The Social Network Analysis gives you a heuristic on the coordination needs between developers on
different teams. The idea is based on Conway’s law - a project works best when its organizational
structure is mirrored in software. Using the Social Network Analysis, you now have a way to ensure that
your organization matches the way the system is designed with respect to the work the developers do.

41

CHAPTER 2. GUIDES

Fig. 2.36: Using the hotspot analysis for architectural components.

Fig. 2.37: Temporal coupling between architectural components.

42

CHAPTER 2. GUIDES

The Social Network Is Build from How the Code Evolves

The social network paths are mined from how your codebase is developed. You see an example of a
social network in code in Fig. 2.38.

Fig. 2.38: An example of a social network in code.

The network is built by identifying developers that repeatedly work in the same parts of the code. The
more often they work in the same parts of the code, the stronger their link in the network. Note that
CodeScene filters developers with weak links since they would clutter the visualization (you can change
the threshold as described in Project Configuration (page 58)).

Define Your Development Teams

The social network lets you identify developers that should be close from an organizational perspective.
The visualization in Fig. 2.38 shows an example of an organization with 8 development teams. If you
hover over a developer, you highlight their peers that tend to work in the same parts of the codebase.
You use this information to evaluate how well your organization supports the way the codebase evolves.

43

CHAPTER 2. GUIDES

That also means you want to compare your organizational chart with the information in the generated
social code network. Any discrepancies has to be understood.

Align Your Architecture and Organization

In a perfect world most of your communication paths would be between developers on the same team.
That is, the teams have a meaning from an architectural perspective; People on the same team work on
the same parts of the codebase. They share the same context, know each other and have a much easier
time coordinating their work.

However, sometimes the world looks radically different. Have a look at Fig. 2.39.

Fig. 2.39: An example of a social network anti-pattern.

The visualization in Fig. 2.39 shows an organization with severe coordination problems. Since the data
has been made anonymous to protect the guilty, you cannot read the names of the teams or developers.
But you still see that the organization has four teams with a high degree of inter-team coordination
between virtually every developer. In practice, this isn’t an organization with four different teams.
Rather, it’s an organization with one giant team of 29 developers with artificial organizational boundaries
between them. The resulting process loss due to coordination needs is likely to be severe and lead to
inefficient development, quality issues and code that’s hard to evolve.

2.3.2 Knowledge Distribution

Let’s face it - software development is a social activity. We work in teams, sometimes distributed, where
we need to communicate and coordinate in order to solve our tasks. Building an organization responsible
for creating and evolving a system is a necessity as soon as your codebase has grown beyond a certain
size. It’s our way to scale and be able to take on larger problems than what we could as individuals.

But moving from individual developers to teams does not come free; No matter how efficient we, as an
organization, are, we’ll always pay a price. The cost of team work is known as process loss. Process

44

CHAPTER 2. GUIDES

loss is the theory that a team, just like a mechanical machine, cannot operate at 100 percent efficiency.
In the mechanical world we have inefficiencies like friction and heat loss. Our software equivalents are
coordination and communication. The main challenge in most software projects is to minimize the
process loss. Failures to do so often come off as technical issues, when in reality those issues have social
roots.

The software industry has been aware of these issues. But until now, we’ve never had a way to measure
them. This is about to change. In this guide you’ll learn how CodeScene helps you uncover knowledge
distribution and identify team productivity bottlenecks in your system. With the following suite of
analyses you’re now able to make organizational decisions based on data from how you’ve actually
worked so far.

How Do We Measure Knowledge?

The knowledge metrics are based on the amount of code each developer has contributed. CodeScene
looks at the deep history of each file to calculate contributions. This makes sense for two different
reasons:

1. The last snapshot of a source code file wouldn’t be good enough since such shallow ownership is
sensible to superficial changes (e.g. re-formatting issues, automated renaming of variables, etc).

2. Even if one developer completely rewrites a piece of code, its original author will still retain some
knowledge in that area since they’re familiar with the problem domain. The metrics in CodeScene
acknowledge that and will retain some knowledge for the original developer as well.

CodeScene uses the name of each committer to calculate knowledge metrics. So please make sure you
understand the possible biases discussed in the guide Know the possible Biases in the Data (page 51).

Prepare the Analyses by Assigning Colors to Developers and Teams

Your knowledge maps are based on colors to give you an accessible high-level overview. Please refer to
the guide in Configure Developers and Teams (page 65) to prepare for the knowledge analyses.

Tip: Use the Code Churn by Author analysis results to identify the top contributors so that you can
assign them as distinct colors as possible.

Explore the Individual Knowledge Map

The first knowledge analysis measures the knowledge distribution for individual developers in your code-
base.

Each developer is assigned a color in the following visualization. The color of each file represents its
main developer (that is, the developer who has contributed most of the code). You see the resulting
visualization in Fig. 2.40.

All knowledge maps are interactive:

• Click on a circle to zoom in on the corresponding package.

• Click outside the circle to zoom out.

• Hover the mouse over a circle to see information about the package or file it represents.

Explore your Team Knowledge Maps

CodeScene also measures knowledge distribution on a team level and this information is usually even
more valuable than the individual metrics.

As soon as you’ve assigned developers to a team, as described in Configure Developers and Teams
(page 65), CodeScene will accumulate their individual knowledge into their teams. The analysis results

45

CHAPTER 2. GUIDES

Fig. 2.40: An example of a knowledge map, hovering a circle to get more information.

are presented using the same principles as for the Individual Knowledge Map. Only now, each color
represents a team.

The Team Knowledge Map lets you reason about both the responsibilities of the different teams. In
general, you want to ensure that your team organization is reflected in the software architecture of your
system. Please refer to the discussions in the guide Social Networks (page 41) for more information on
the organizational theories and how they correlate to the quality and efficiency of your organization.

Uncover the Knowledge Loss in your Codebase

Knowledge loss represents code that is written by a developer who is no longer part of your organization
or project. You use this information to reason about the knowledge distribution in your codebase and as
part of your risk management since it is an increased risk to modify code we no longer understand. In
addition, you can also use the analysis pro-actively to simulate the consequences, in terms of knowledge
loss, of planned organizational changes.

The Knowledge Loss analysis will accumulate the contributions of all developers that you have marked
as Ex-Developers in your configuration (see Configure Developers and Teams (page 65)). Those parts of
the codebase that are dominated by Ex-Developers are marked as red in the knowledge loss visualization.
Fig. 2.41 shows an example from an organization where some core developers have left.

2.3.3 Parallel Development and Code Fragmentation

Large scale software development is a social activity. However, the technical nature of our work tends to
obscure that fact and we often mistake organizational issues for technical problems.

One such example is excess parallel development. Excess parallel development is something that happens
when your architecture cannot support the way you’re organized. You may have 20-30 developers that
need to modify the same file, but for different reasons. The symptoms you see are often technical, for
example expensive merges, code that’s hard to understand since it’s changed by different people all the

46

CHAPTER 2. GUIDES

Fig. 2.41: An example on a knowledge loss analysis.

time, or unexpected feature interactions. CodeScene’s Parallel Development analysis helps you uncover
and prioritize these problems.

Before you read on, please note that CodeScene uses the name of each committer to calculate the
fragmentation metrics. So make sure you understand the possible biases discussed in the guide Know
the possible Biases in the Data (page 51).

The Fragmentation View Uncovers Excess Parallel Development

Excess parallel development means the modules have a high fragmentation value. A high fragmentation
value means that the development effort is shared between multiple programmers. This is a risk you want
to be aware off - the number of programmers is one of the best predictors of the number of post-release
defects in a module. The more programmers, the more quality issues in that code.

CodeScene runs the fragmentation analyses on both individual authors and teams. You may want to
focus on the team view in case you have cohesive teams with well-defined responsibilities. If that’s not
the case, start with investigating the fragmentation by authors. Both of them shows the fragmentation
value of each file in the codebase, as illustrated in Fig. 2.42.

The fragmentation map in Fig. 2.42 shows the fractal value of each file. A fractal value is the degree of
parallel work:

1. Fragmentation 0 (zero): This means that the file has had a single developer working on it.

2. Fragmentation closer to 1.0 (one): The closer to 1.0 the fragmentation gets, the more developers
behind the code and the smaller the contribution of each developer.

Once you’ve found a part of your codebase with excess parallel work you want to get more detailed
information. The Fractal Figures described in the next section gives you all the details you need.

47

CHAPTER 2. GUIDES

Fig. 2.42: The fragmentation map shows files with excess parallel development.

Get more Detailed Information with Fractal Figures

The fragmentation map in Fig. 2.42 is interactive. That means you can click on each file and inspect the
amount of fragmentation as illustrated in Fig. 2.43.

2.3.4 Modus Operandi

Modus Operandi is the method of opereration. It’s the signature for how you work with the codebase
and lets you discover trends and risks in the type of coding you do.

What is Modus Operandi?

Forensic psychologists refer to Modus Operandi as the method of operation, a criminal signature. Soft-
ware teams have a modus operandi, too. Our analyses help you uncover it to better understand how the
team works. The information will never be precise, but lets you ask the right questions and guide your
discussions by opening a new perspective on your daily work.

Inspect Trends in Your Commit Messages

CodeScene’s JIRA integration (see Project Management Analyses (page 51)) lets you discover trends
in the type of work you do. However, not all organizations use JIRA. There may also be work-related
information that isn’t available in JIRA.

Thus, CodeScene provides a second data source for work-related trends: your commit messages. Your
commit messages is an interesting data source too, as illustrated in Fig. 2.44

By default, CodeScene will identify all commit messages that contain the texts bug, fix, or defect as
illustrated in Fig. 2.45. Please note that the matches are always case insensitive. That is, if you specify
bug, CodeScene will match both bug and Bug.

You can configure CodeScene to match any word or phrase that you want. You just specify a regular
expression in the Modus Operandi section of the project configuration.

48

CHAPTER 2. GUIDES

Fig. 2.43: An example of a developer fragmentation. Hovering a colored fragment shows the developer and the
relative contribution.

49

CHAPTER 2. GUIDES

Fig. 2.44: Your commit messages contains work-related information.

Fig. 2.45: Inspect all commits that mention a particular word or phrase.

50

CHAPTER 2. GUIDES

2.3.5 Know the possible Biases in the Data

Our social metrics, like all software metrics, are an approximation of the real world. There will always
going to be corner cases and biases in the data. In particular, there are some situations where the metrics
don’t perform as well. So please read the following section in order to minimize the bias in the analysis
results.

Developers with Multiple Aliases

A developer may end up with multiple aliases. Perhaps they’re committing from both a personal- and
a company account. Or they’ve changed their e-mail address. This introduces a bias in the data since
CodeScene uses the name of each developer as their identification.

Fortunately, this bias is easy to avoid by utilizing a Git feature called .mailmap. A .mailmap is a file
that you include in the root of your Git repository. The file specifies a mapping from multiple names and
addresses to the canonical name and address of each developer with multiple aliases. It’s straightforward
to use a .mailmap, so please check out the git log documentation for the format.

Autosquash Commits

Some teams may use a Git feature called autosquash. This feature is a way of re-writing the development
history. It may be fine if squashing is used for the work of an individual developer. Unfortunately the
feature is sometimes used to combine the work of multiple programmers into a single commit.

The consequence is that the analyses lose important data for temporal coupling and, in particular, the
social metrics become more limited than they’d have to be. For example, it’s not possible to generate
a knowledge map over individual programmers, which means that you miss the opportunity to use the
analysis methods for on- and off-boarding.

It’s highly recommended that you reconsider the autosquash strategy in case you apply it today. In
general, the work of multiple programmers should not be compressed in a single commit.

Pair Programming

The knowledge metrics in CodeScene are based on the author of the code as recorded by Git. This may
obviously be misleading if your organization does pair-programming.

A future version of CodeScene will address pair-programming knowledge by having the option to fetch
the author names from the commit message instead and assign the knowledge to both authors. However,
in the current version there’s no such option.

If you use pair-programming you’re also likely to rotate pairs on a daily basis. In that case, we recommend
that you ignore the analysis of individual developers and focus on your team knowledge map instead,
which will have accurate data.

2.4 Project Management

2.4.1 Project Management Analyses

CodeScene’s suite of project management metrics let you measure where you spend your costs and inspect
both cost and activity trends.

The Need for Project Management Metrics

CodeScene’s project management metrics answer two common questions:

1. How shall we prioritize improvements to our codebase?

51

https://git-scm.com/docs/git-shortlog

CHAPTER 2. GUIDES

2. How can we follow-up on the effects of the improvements we do?

Sure, our Hotspot analysis already addresses these questions and gives us a tool to prioritize. However,
there’s a linguistic chasm between developers and managers here; To a manager, a “commit” doesn’t
carry much meaning. A commit is a technical term that doesn’t translate to anything in the manager’s
world. At the same time, technical debt and low quality code are important subjects to address. So how
can we talk the language of a manager while still tying our data back to something that communicates
with the developers responsible for the code?

CodeScene bridges this chasm by introducing a suite of project management metrics. These metrics
combines our existing version-control measures with data from Jira. This gives you Hotspots measured
by cost rather than the more technical change frequency metric. It also gives you trends in both your
costs and the type of work you do (e.g. features vs maintenance). Let’s see how it is done.

Learn to Interpret the Project Management Metrics

You need to configure CodeScene to access the Jira service. Once that’s done, CodeScene will auto-
matically retrieve the Jira data and run an analysis on it. The results are presented on the Analysis
Dashboard as shown in Fig. 2.46.

Fig. 2.46: The metrics are accessed from the analysis dashboard.

Click on the Project Management tile to get to the detailed results. The detailed results presents Hotspots
by cost and let you access the trends. Let’s look at some examples.

The Hotspots by Costs provide an overview of which part of the code that are the most expensive to
maintain. The analysis works just like the normal technical Hotspot analysis. The main difference is that
these Hotspots are ranked by cost rather than the change frequency of the code. You see an example in
Fig. 2.47

As you see in Fig. 2.47, most time is spent in a module named repository_feature.clj. That means you
want to prioritize improvements to that code. Before you do that, however, you’d like to look at the cost
trend to see if this is recently accumulated cost or if the Hotspot has been expensive to maintain for a
long time.

You access the cost trends by clicking on a Hotspot and select Cost Trend as shown in Fig. 2.48.

The cost trend is presented in two different graphs:

1. The first graph will show the accumulated cost by month for the selected Hotspot. The costs are
a summary of all Jira issues that have involved work in this specific Hotspot.

52

CHAPTER 2. GUIDES

Fig. 2.47: A Hotspot analysis by cost lets you see where you spend most time.

Fig. 2.48: Access the cost trends from the interactive Hotspots Map.

53

CHAPTER 2. GUIDES

2. The second graph shows the cost distributed across the type of work you’ve done.

You use this information to ensure that the code evolves in the right direction. For example, you’d like
to see a decrease in the amount of bugfixes and an increase in the amount of feature related issues. You
can also use the cost trends to measure the effect of large-scale improvements as illustrated in Fig. 2.49.

Fig. 2.49: Use the Cost Trends to measure the effect of improvements.

A Note to Developers

You’ll probably notice a high correlation between the project management results and the results from the
technical Hotspot analysis. This is an expected finding. However, the project management metrics have
another usage. Since the project management metrics speak the language of a non-technical managers,
these analyses provide a basis for communication. Use this data to motivate investments in software
quality, like for example to explain the need for a larger refactoring of one ore more top Hotspots.

Pre-Requisites for the Project Management Analyses

This suite of analyses fetches data from a project management tool like Jira. CodeScene provides a Jira
integration as a separate service. However, the Jira data only contains the raw costs (hours, story points,
etc) of a story - there’s no specification of how those costs are shared across the different parts of your
codebase.

CodeScene solves this problem by mapping the Jira data to our wealth of version-control metrics. There
are a number of pre-requisites that are mandatory for this process to work:

• You need to include your Jira Ticket/Issue/Story ID in the commit messages. We use that infor-
mation to unify the data sources.

• You need to have a cost metric in your Jira story. CodeScene supports time-based costs (i.e.
minutes of time to completion) and story points.

Limitations in the Analysis Data

The cost trends and analysis results will never be better than the available raw Jira data. That is, if
your reported costs on a Jira story are too far off, the analysis don’t have any way to adjust it.

In addition, there are a number of limitations that you need to be aware of:

54

CHAPTER 2. GUIDES

• The total costs for a Jira issue are assigned to the last known month that the issue was worked on.
So if you have long-running issues, you’ll see the costs assigned to a single month even if the issue
took, let’s say, 3 months to implement.

• All files that were worked upon in a Jira issue get assigned the same cost. In reality, some files
typically account for a larger amount of the total costs, but there’s no way for CodeScene to know
that. Instead we treat each file as an equal contributor to the issue.

In general, you’ll find that you get much more out of the analysis results as long as you remember that
the project management metrics are heuristic in their nature rather than precise predictions of the future.

2.4.2 Risk Analysis

CodeScene analyses the risk of each commit. This lets us present both a risk trend and also an early
warning as soon as a high risk commit is detected.

You use this information to react early and focusing code reviews and testing. You also use the overall
risk trend as input and feedback on planned delivery activities.

How Does CodeScene Know That a Commit is High Risk?

CodeScene calculates a unique risk profile for your codebase. The risk profile is based on how the system
has evolved and what a typical change looks like. That is, CodeScene looks more at how a commit looks
than the changed code itself.

CodeScene’s risk profile is a combination of technical and social metrics. The technical metrics relate to
the amount of code that is changed, how many different files that are changed, and the diffusion of the
changes (e.g. how many different sub-systems does the commit touch).

The social dimension of the risk profile relates to the experience of the programmer doing the change.
The more experienced the programmer, the lower the risk. This means that two commits with identical
changes may be classified differently depending on the programmer who made the change; Experience
mediates risk. For example, if I make a large sweeping change to the Linux kernel, my change probably
has higher risk than an identical change made by Linus Torvalds. Please note that experience is relative
to your codebase and measured as how much each programmer has contributed to your code historically.

The risk classificaiton that you’ll see in CodeScene always combines these technical and social dimensions.

What’s the Scale of Commit Risks?

CodeScene scores each commit on the range 1 to 10. 1 is a low risk change and 10 is the highest risk.
By default, CodeScene flags all commits with a risk of 7 (or higher) as high risk. You can change this
threshold in the project configuration.

Inspect your Risk Profile

CodeScene delivers an early warning as soon as a high risk commit is detected as illustrated in Fig. 2.50.

Click on the early warning shown in Fig. 2.50 to view the commit details as illustrated in Fig. 2.51.

CodeScene also calculates a rolling average of your risk profile. This analysis lets you reason about risk
trends in your project and relate that trend to both your ongoing work as well as predict delivery risk.

The example in Fig. 2.52 shows a project where there’s a significant increase in the average risk during
development. When you see a trend like this it’s important to understand why. Perhaps several large
features are being implemented? Or perhaps there’s a change in the ways of working or development
methodology? In any case, it would probably be a mistake to plan a release in July for this particular
project since there has been a lot of recent high risk work that deviates from how the codebase grew
before that date.

55

CHAPTER 2. GUIDES

Fig. 2.50: An Early Warning for recent high risk commits.

Fig. 2.51: Inspect the details of each recent high risk commit.

Fig. 2.52: The risk trend shows the average risk in the evolution of your codebase.

56

CHAPTER 2. GUIDES

Risks Are Relative To The Analysis Period

It’s important to note that your risk profile is always relative to your particular analysis period. That is,
you get a different risk profile if you analyze the complete history of your code versus a short retrospective
analysis. This is by design and most likely to be the information you want.

However, you need to be aware that if you run a Retrospective analysis, you may see more high risk
commits. That just means those commits stand-out compared to the rest of the work you did in that
sprint/iteration; It doesn’t necessarily mean that those commits would be high risk relative to the
complete evolution of your system. To find out, you need to run a full analysis.

57

Chapter 3

Configuration

3.1 Project Configuration

3.1.1 Specify the Git Repository to Analyze

Your first step is to tell CodeScene where your code is. You have three different ways of doing that:

1. Specify the paths to your local, physical Git repository, which has to be on the same machine as
CodeScene runs on. The path you specify has to be to the root folder of your repository (i.e. the folder
that contains your .git folder).

2. Let CodeScene scan a folder on your file system for repositories to analyze. You’ll be prompted
with the results and are free to ignore the repositories you want to exclude. This option is useful in a
multi-repository project.

3. Specify the URLs to Git remotes. CodeScene supports the protocols specified by Git clone: ssh,
http, and git. CodeScene will clone the remotes to a local folder that you specify in the configuration as
illustrated in Fig. 3.1. Note that CodeScene will re-use a local Git repository if there’s an existing clone
on the path you specify. Also note that you need to have a an ssh-key that lets the CodeScene (system)
user access your remote repositories.

Finally, note that you cannot mix local repository paths with URLs to remote Git repositories in a single
analysis project.

3.1.2 Analyze Projects organized in Multiple Git Repositories

There’s a recent trend towards organizing the source code of larger systems in multiple Git repositories.
For example, you may have the code for your user interface in one repository, the code for your service
layer in another repository and perhaps even a Git repository dedicated to your back end mechanism.
Another typical example is Microservices where each service is deployed according to its own life cycle.
In that case, organizations often chose to use one Git repository per service.

CodeScene supports an analysis of multiple repositories at once. All you have to do is to specify the
paths to them:

The screenshot above shows three repositories that belong to the same product. During an analysis,
CodeScene will analyze the evolution of the code in all those repositories as though they were in the same
physical Git repository.

You can specify as many repositories as you want and remove one at any time (just erase the text in
that box). However, a word of warning: do NOT attempt to analyze unrelated repositories in the same
configuration. First of all it’s a breach of the license agreement. Worse, you won’t get useful results since
many of the basic metrics, like Hotspots, are relative metrics.

58

CHAPTER 3. CONFIGURATION

Fig. 3.1: Let CodeScene clone your Git repositories through their URL.

Fig. 3.2: Configuration of multiple repositories.

59

CHAPTER 3. CONFIGURATION

3.1.3 Auto-Import Repository Paths

Specifying one or two repositories by hand is straightforward. However, some systems consists of hundreds
of repositories. In that case you want to use the auto-import feature.

The auto-import feature lets you specify a root path to where your repositories are located. Here’s what
it looks like:

Fig. 3.3: Automate the import of multiple repositories.

CodeScene will scan the path you provide to discover any Git repositories. The discovered Git repositories
are presented in a list. Note that you can add additional repositories manually or remove the once you
want to exclude:

Fig. 3.4: The result of auto importing multiple repositories.

From here you just press Continue to proceed with the configuration of your analysis. The rest of the
workflow is identical to the case where you specify repositories manually.

60

CHAPTER 3. CONFIGURATION

3.1.4 Measure Temporal Coupling across Multiple Repositories

The normal temporal coupling metric considers two files coupled if they tend to change in the same
commits. This won’t work if your codebase is split across multiple repositories. Instead, you want
to aggregate individual commits into logical commits. CodeScene supports two different strategies for
aggregating commits:

By Author and Time When you specify this option, the tool will consider all commits by the same
author on the same day as a single, logical commit. This option is a heuristic that works well in
the absence of a Ticket ID in your data.

By custom Ticket ID This option uses an identifier in your commit headers. All commits that refer to
the same identifier will be considered one logical commit.

The second option, By custom Ticket ID, is the preferred method. Fig. 3.5 shows the options in the
repository configuration section Temporal Coupling.

Fig. 3.5: There are two available strategies for aggregating commits.

To aggregate by custom Ticket ID, you need specify a Ticket ID Pattern, in the Ticket ID Mapping
section (see Fig. 3.6). The pattern is used to extract the Ticket ID from the commit message. The
example pattern in Fig. 3.6 will extract all identifiers that start with the text ISSUE- followed by at least
one digit. For example, the commit message ISSUE-42 will result in 42 as the extracted Ticket ID.

Fig. 3.6: Configure a pattern to extract a Ticket ID.

Note that CodeScene will still calculate normal temporal coupling on a single commit basis. You want
that in order to spot unexpected dependencies between files in the same repository. The temporal
coupling results for the logical commits discussed above are presented in a separate analysis view.

3.1.5 Exclude Files from an Analysis

An analysis will include all textual content in your repository. That means: you get an analysis of
your build scripts, resource files, configuration files, test data, etc. While it’s a good practice to run
an analysis of all content every now and then, there’s also the risk that you get too much noise in the
analysis results. For example, you typically want to exclude auto generated content.

The Exclude Files option lets you specify a set of file extensions that will be excluded from your analysis:

61

CHAPTER 3. CONFIGURATION

Fig. 3.7: Exclude specific types of files.

CodeScene comes with a set of pre-defined exclusion patterns that should match the most common cases.
You’re free to extend this set if you have additional file types that you want to exclude. Just remember
to use a semi-colon (;) to separate each file extension you want to exclude.

3.1.6 Exclude Specific Files and Folders from an Analysis

You just learned how you can exclude certain types of files, no matter where they are located in the your
codebase. But sometimes you’d like to exclude a particular file or, more often, a complete folder. For
example, let’s say that you check-in third party code in your repository. You don’t want that code to
obscure potential analysis findings in your own code.

There are two different ways to exclude complete folders and files:

1. White list the content you want to include in the analysis. All other content will automatically be
excluded.

2. Black list the content you want to exclude.

You can specify both white- and black list content. The white listing will be applied first.

You specify a glob pattern to white list the content to include in your analysis as illustrated in Fig. 3.8.

Fig. 3.8: Glob patterns to white list content.

You specify a glob pattern to Exclude Content from the analysis as illustrated in Fig. 3.9.

Fig. 3.9: Glob patterns to exclude content.

62

CHAPTER 3. CONFIGURATION

The example above will exclude all content under the external folder and the file samples.txt from the
generator folder.

Note: You need to specify your exclusion paths using UNIX style path names. That is, use forward
slashes as separators. Also note that the paths have to start with the name of your repository root.
That is, if your Git repository is located in a folder named backend, as in the example above, you have
to prepend that folder name to all your exclusion patterns. The reason for that is due to CodeScene’s
support for multiple repositories where you have to be explicit about what repository you exclude things
from.

There’s one exception to the rule that patterns have to specify the repository root. That’s the case when
you want a pattern to apply across all repositories. For example, let’s say that you want to exclude all
shell scripts in your test folder. In that case you specify a pattern like **/test/*.sh That is, your patterns
are allowed to start with a wildcard too.

3.1.7 A Brief Guide to Glob Patterns

Glob patterns let you specify paths- and file names with different wildcards. CodeScene supports the
following wildcards:

1. * : A single asterisk matches any string of characters. Use it to exclude or while list particular files.
For example *.h will exclude all files with extension h. You can also use the single asterisk to specify
glob patterns that apply to all your repositories in a multi repository analysis project. For example, the
glob pattern */version.txt will match (and possibly exclude) the version.txt files at the top level of each
of your repositories.

2. ** : The double asterisk matches whole paths/directories. You use the double asterisk to exclude
or white list content independent of the content’s location in your codebase. For example, the pattern
myrepository/**/*.h will match all files with extension h in any directory in your repository. You can
also use the double asterisk to match exclude or white list whole folders. Let’s say we want to exclude
all our unit tests from an analysis and that those tests are located in the repository ‘coolstuff’. Here’s a
pattern for that: coolstuff/test/**.

3. ?: The question mark matches a single character.

Please note that all glob patterns are specified using UNIX style path names. That is, if you’re on
Windows you do not use backslash to separate directory names, but rather the UNIX style forward
slash. That is, the directory SomeRepo\Test is excluded by specifying SomeRepo/Test/**.

3.1.8 Specify An Analysis Period

CodeScene lets you specify an analysis period as illustrated in Fig. 3.10. That is, how much of your
repository history do you want to analyze?

The actual analysis period you select depends on several factors:

1. The activity in your project: Select a short analysis period, like 6 months, in a codebase with a lot
of development activity.

2. The information you want: If you want an overall view of potential maintenance problems, we
recommend that you use a longer analysis period like a couple of years. If, on the other hand, you want
to identify recent modifications to the codebase, your analysis period could be as short as the length of
your iterations (2-3 weeks).

3. You have recently re-structured the codebase: In this case you want to specify an analysis start date
after the re-structuring. The rationale is that the history is probably not as useful since you now have a
new structure of your system. Use that as the cut-off point.

By default CodeScene will use two different analysis periods depending on the type of information it
analyses:

• Technical information and Team information uses the specified date.

63

CHAPTER 3. CONFIGURATION

Fig. 3.10: Specify how far back in time you want CodeScene to analyse.

• Individual knowledge metrics use the full history of your repository.

The rationale is that analyses on the level of individual developers, like knowledge maps and knowledge
loss, need to take the full history of the codebase into account in order to be accurate. You can disable
this behavior and use the specified date for all analyses by unchecking the box “Use the complete Git
history for knowledge metrics” (see Fig. 3.10).

Finally, please remember that selecting an analysis time span depends on the questions you have. As
such your choice depends on your context and is more of a heuristic than a science. Always start with
an analysis of the full history when in doubt.

3.1.9 Visualization Options

CodeScene is capable of analyzing large codebases consisting of millions lines of code. However, the web
browser you use to view the results isn’t always that performant. In particular, if you have a repository
with several thousands of files, the Hotspot and Knowledge visualizations will become slow and painful
to navigate.

If you experience that problem, consider to increase the thresholds in the Visualization section, shown
in Fig. 3.11.

Fig. 3.11: Exclude small files from a visualization.

The first option simply excludes files smaller than your specified size from the visualizations. The second
option excludes files that haven’t changed more often than the threshold you enter.

The rationale is that in a system of several thousand files, the small ones (1-100 Lines of Code) are
probably not the most interesting ones. Thus, these should be safe to exclude.

Note that the visualization algorithm performs some checks to ensure that a hotspot, no matter how
small, is included anyway so that you don’t miss some important result. Also note that the exclusion

64

CHAPTER 3. CONFIGURATION

only applies to the visualization - the code is still included in the analysis.

3.2 Configure Developers and Teams

Your knowledge maps are based on colors to give you an accessible high-level overview. The system will
automatically assign a distinct color to each top-contributor in your codebase on the first analysis. But
you still need to assign a color to the other developers if you want to identify them in the visualizations.
Similarly, you can define teams of developers and assign each team a color as well.

Fig. 3.12: Sample on colored knowledge maps.

The rest of this guide will walk you through the configuration.

3.2.1 Important: Run an Initial Analysis Before You Configure Developers

CodeScene mines a list of all contributing developers. Note that this list is mined and updated during
each analysis. That means you need to run one initial analysis before the tool gives you the option to
configure developer properties!

3.2.2 Define Your Development Teams

Click the Teams tab in your project configuration to proceed to the teams configuration, as shown in
Fig. 3.13.

For each team in your organization, specify the following properties:

• Team name: This will be used to identify the team. Later, when you configure developers, you’ll
assign them to the team names you chose here.

• Team Color: The team color is used in the visualization of knowledge distribution on team level.

65

CHAPTER 3. CONFIGURATION

Fig. 3.13: Configure teams for a project in the Teams tab.

Add a team for each team in the organization that works on your codebase (see Fig. ??).

Tip: Some organizations just use one development team. In that case, introduce virtual teams that
depend upon the responsibilities of the different developers. For example, you might want to define a
Feature team, a Maintenance team and an Infrastructure team. Using this strategy, you’d be able to
identify code at risk for incompatible parallel changes since different forces lead to the changes.

Even Open-Source Software Has Teams

The team definition is straightforward if you analyze a codebase that’s owned by a traditional organiza-
tion; Just use the information from your organizational chart. However, we find it interesting to apply
teams to open-source codebases as well.

So if you happen to analyze an open-source project, consider introducing the following teams to get
additional social information:

• Define a teams for the organization that owns the code. For example, if you analyze the Clo-
jure codebase, you’d define Cognitect as one team. If you analyze one of Microsoft’s open-source
codebases, you’d use Microsoft as one team.

• Define a team for third party developers that contribute to the codebase

• Consider defining a team of the core maintainers too.

66

CHAPTER 3. CONFIGURATION

3.2.3 Configure Developer Properties

The developer properties are a bit more tricky than the team configuration, so please let us walk you
through them one by one as illustrated in Fig. 3.14.

Fig. 3.14: Specify organizational information for each developer.

CodeScene automatically updates the list of contributing developers; If a new developer starts to con-
tribute code, they’ll be present in the list and the tool lets you configure their properties.

Here are the properties you need to specify:

1. Color: The color is used on the knowledge maps to uniquely identify a developer. Try to assign
the top contributors as distinct colors as possible.

2. Active/Ex-Developer: By default, all developers are considered active. If some of them leaves your
project, mark them as Ex-Developers and CodeScene will include them in the Knowledge Loss
Analysis.

3. Team: The third column lets you assign the developer to a team. That will include them in the
Team Knowledge Distribution Analysis.

4. Exclude author from analysis: If you check this option, the author will be excluded from all social
analyses (although their contributions will still be included in the technical analyses like Hotspots
and Code Churn). This is an option you use in case you have roles like System Integrators that
only merge code, but never actually make their own contributions.

Once you’ve defined all developer properties you just need to run a new analysis and you’ll get a smor-
gasbord of interesting social analysis results.

3.2.4 Import a Definition of Development Teams

It may well be impractical to configure each team and developer via the UI, particular for large organi-
zations. That’s why CodeScene supports import of the organizational chart.

You find the import functionality in the Team configuration:

The input file specifies your organization. The file format has to be a CSV with two columns: author
and team.

67

CHAPTER 3. CONFIGURATION

Fig. 3.15: Importing developer information by uploading a CSV file.

3.3 Hotspot Metrics

You’ve already learned about Hotspots in Hotspots (page 12). In this part of the guide you’ll learn more
about the metrics behind the hotspot criteria and the rare instances of when you want to specify an
alternative algorithm for hotspots.

3.3.1 Understand the possible Bias in Commit Styles

By default, CodeScene uses the commit frequency of each file as the Hotspot criteria; The more changes
you’ve done to a file, the higher its change frequency. This default criteria is supported by several findings
from academic research; change alone is the single most important metric when it comes to quality issues
in code.

However, there are some rare cases when this metric becomes biased. One reason is large individual
differences in commit style. Another possible source of bias is for semi-automated code updates like
refactoring via a tool. If you rename a type, all other code that references that type get updated as
well. This may even include hyper linked code comments. Since it’s a minor change in terms of both
programmer effort and risk, one could argue that such changes are less important.

It’s important to point out that even when you experience any of the situations above you may still be
fine. In a large system, such differences tend to even out. However, if you suspect that the impact is
large enough to bias your data, please consider using Relative Code Churn as Hotspot criteria instead of
the number of commits. Let’s see how you can configure that alternative.

3.3.2 Enable Relative Code Churn

Relative Code Churn is an alternative hotspot metric that calculates the amount of change in each file
in terms of Lines of Code. It’s a relative metric since the churn is weighted against the total size of the
code in each file.

You enable Relative Code Churn in your Project Configuration:

Fig. 3.16: You can switch to “Relative Code Churn” in the project configuration.

From now on, all Hotspots are calculated based on the amount of change to their lines of code.

3.3.3 The Pros and Cons of Relative Code Churn

The major drawback of using churn measures to predict Hotspots, is that small files that change often
get a very high churn rate. CodeScene automatically adjust for this scenario, but it’s still something you
want to be aware of.

68

CHAPTER 3. CONFIGURATION

Relative Code Churn has other uses besides providing an attractive alternative in case of biased commit
styles. For example, you’ll find that old, now stable files fall much faster on the Hotspot ranking ones the
development efforts shift to other parts of the codebase. With number of commits, a historic Hotspot
that have since been refactored, may still stick around the top ranking due to its troubled past.

Finally, you’ll probably find that there’s a high correlation between the two Hotspot metrics. In that
case, prefer the number of commits metric since it’s easier to reason about.

3.4 Users and Roles

CodeScene lets you create users and grant them various levels of access depending on their roles.

3.4.1 Adding Users

When logging in with your Licensee Name and Product Key you receive full administrative privileges.
Some tasks require these special privileges, such as deleting projects and managing the global configura-
tion. We recommend using the administrator login only for such tasks, and creating user accounts with
restricted access for regular work.

By clicking the “Configuration” tab in the top navigation bar you get to the global configuration page.
If you are logged in as the administrator, you should see the Users configuration, as in Fig. 3.17.

Fig. 3.17: In the global configuration you can add new users to the system.

Enter the user name and password, and click “Add User” to finish. The password can be changed later
if needed, either by the administrator or the users themselves.

3.4.2 Assigning Roles

The system comes preconfigured with a number of roles. You can assign roles to the users in your system
to grant them specific access.

Technical Technical analyses only.

Developer Technical, architectural and social analyses.

Architect Technical, architectural and social analyses.

Test Leader Hotspot and knowledge map analyses.

Manager Technical quality guide and social analyses.

Full Read-only Access Access to all analyses, but cannot perform any actions. Can be used for guest
access.

In the table of existing users you can see the currently assigned roles. Click on the Role select box, as
shown in Fig. 3.18, to change the assigned role of a user.

69

CHAPTER 3. CONFIGURATION

Fig. 3.18: By clicking the Role select box you can change the assigned role of a user.

3.5 Project Management Integration

CodeScene supports integration with project management (PM) systems, like JIRA. Issues in the PM
system are mapped to the corresponding commits in the version control system.

3.5.1 Repository Configuration

By default, PM integration is disabled (see Fig. 3.19). Enable by checking the ‘Enabled’ checkbox.

Fig. 3.19: Check ‘Enabled’ to enable the project management integration.

Enabling the integration lets you edit the remaining fields (see Fig. 3.20):

API URL The base URL of the PM integration service. If you have deployed the JIRA integration in
Tomcat, the URL will likely be http://localhost:8080/codescene-enterprise-pm-jira.

API Credentials The credentials needed to access the PM integration service. Note that these are the
credentials that are configured in the PM integration service.

Test Connection Try connecting using the specified API URL and credentials, and check the status
of the PM API, before saving the configuration. Use this option to verify the connection before
running an analysis.

External Project ID The project identifier in the external system. If the external system is JIRA, this
field should contain the JIRA project key. For example, if issues are named MYPROJ-123, the
project key (and thus the external project ID) is MYPROJ.

You can add multiple JIRA projects here by separating them with a semicolon, ; as shown in Fig. 3.21

70

https://www.atlassian.com/software/jira

CHAPTER 3. CONFIGURATION

Fig. 3.20: A configuration sample for project management integration.

Fig. 3.21: A configuration sample for integration with multiple projects.

71

CHAPTER 3. CONFIGURATION

3.5.2 Ticket ID Configuration

Each item from the PM integration has an ID that needs to match the Ticket IDs in CodeScene. For
example, when integrating with JIRA, the mapping needs to extract the ID part from the JIRA issue
key. In addition to mapping item IDs from the PM system, the ticket IDs need to be extracted from the
VCS logs, which is called Ticket ID Mapping. Measure Temporal Coupling across Multiple Repositories
(page 61) explains Ticket ID Mapping in greater detail. Fig. 3.22 illustrates how both mappings extracts
IDs with the same format.

Fig. 3.22: Ticket IDs are extracted from the VCS logs using Ticket ID Mapping, and Project Management Item
IDs are mapped from JIRA issue keys using a configured pattern in the JIRA integration service.

Ticket ID Configuration for Multiple JIRA Projects

Please note that in case you integrate with multiple JIRA projects, you may have to use a different
Ticket ID configuration in case the ID’s may overlap.

For example, let’s say you integrate with three projects. Each project will have a JIRA ID like
FRONTEND-123, BACKEND-765 and so on. In this case you want to use the whole JIRA ID as a
Ticket ID to ensure that they are unique. In addition, you need to specify a regular expression that will
match all your possible JIRA ID ranges

Fig. 3.23 shows an example on such a configuration.

Fig. 3.23: Ticket ID specification that matches items from multiple JIRA projects.

72

	Getting Started
	Configure Your Environment
	Install the Supporting Tools
	Setup an SSH Key for Git

	Installation
	Run CodeScene from the Command Line
	Install CodeScene on a Server
	Configure additional users

	Run an Analysis
	Creating a New Project
	Force an Analysis
	Run a Retrospective
	Find your Way Around

	Ensure you use a Mailmap
	Use a Reverse Proxy for HTTPS Support
	Display A Monitor Dashboard
	View the Monitor Dashboard

	Guides
	Technical
	Hotspots
	Temporal Coupling
	Complexity Trends
	X-Ray
	Code Churn
	Code Age

	Architectural
	Architectural Analyses

	Social
	Social Networks
	Knowledge Distribution
	Parallel Development and Code Fragmentation
	Modus Operandi
	Know the possible Biases in the Data

	Project Management
	Project Management Analyses
	Risk Analysis

	Configuration
	Project Configuration
	Specify the Git Repository to Analyze
	Analyze Projects organized in Multiple Git Repositories
	Auto-Import Repository Paths
	Measure Temporal Coupling across Multiple Repositories
	Exclude Files from an Analysis
	Exclude Specific Files and Folders from an Analysis
	A Brief Guide to Glob Patterns
	Specify An Analysis Period
	Visualization Options

	Configure Developers and Teams
	Important: Run an Initial Analysis Before You Configure Developers
	Define Your Development Teams
	Configure Developer Properties
	Import a Definition of Development Teams

	Hotspot Metrics
	Understand the possible Bias in Commit Styles
	Enable Relative Code Churn
	The Pros and Cons of Relative Code Churn

	Users and Roles
	Adding Users
	Assigning Roles

	Project Management Integration
	Repository Configuration
	Ticket ID Configuration

